Lung injury due to mechanical ventilation is associated with an impairment of endogenous surfactant. It is unknown whether this impairment is a consequence of or an active contributor to the development and progression of lung injury. To investigate this issue, the present study addressed three questions: Do alterations to surfactant precede physiological lung dysfunction during mechanical ventilation? Which components are responsible for surfactant's biophysical dysfunction? Does exogenous surfactant supplementation offer a physiological benefit in ventilation-induced lung injury? Adult rats were exposed to either a low-stretch [tidal volume (Vt) = 8 ml/kg, positive end-expiratory pressure (PEEP) = 5 cmH2O, respiratory rate (RR) = 54-56 breaths/min (bpm), fractional inspired oxygen (Fi(O2)) = 1.0] or high-stretch (Vt = 30 ml/kg, PEEP = 0 cmH2O, RR = 14-16 bpm, Fi(O2) = 1.0) ventilation strategy and monitored for either 1 or 2 h. Subsequently, animals were lavaged and the composition and function of surfactant was analyzed. Separate groups of animals received exogenous surfactant after 1 h of high-stretch ventilation and were monitored for an additional 2 h. High stretch induced a significant decrease in blood oxygenation after 2 h of ventilation. Alterations in surfactant pool sizes and activity were observed at 1 h of high-stretch ventilation and progressed over time. The functional impairment of surfactant appeared to be caused by alterations to the hydrophobic components of surfactant. Exogenous surfactant treatment after a period of high-stretch ventilation mitigated subsequent physiological lung dysfunction. Together, these results suggest that alterations of surfactant are a consequence of the ventilation strategy that impair the biophysical activity of this material and thereby contribute directly to lung dysfunction over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00528.2007 | DOI Listing |
Gut Microbes
December 2025
Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Paris, France.
Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India. Electronic address:
Nonylphenol (NP), a non-ionic surfactant and potent endocrine disruptor, is known for its environmental persistence, biotic accumulation potential and toxicity. Nonetheless, mechanisms underlying NP modulation of female fertility with potential impact on embryogenesis in the unexposed offspring remain elusive. This study investigates the effects and toxic mechanisms of maternal exposure to NP at varying concentrations (50 and 100 μg/L) on zebrafish (Danio rerio), specifically focusing on ovarian health, reproductive parameters, and early developmental potential in the F1 generation.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
Background And Aim: NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Background: Doxepin (DX) is used orally to relieve itching but can cause side effects like blurred vision, dry mouth, and drowsiness due to its antimuscarinic effect. To reduce these adverse effects and improve skin permeation, DX is being developed in topical formulations. This study aims to improve DX skin absorption by developing a microemulsion (ME) formulation (ME-DX).
View Article and Find Full Text PDFMater Horiz
January 2025
Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, 201314, India.
This study focuses on fabricating photonic crystals (PCs) by surfactant-based particle capture at the gas-liquid interface of evaporating sessile droplets. The captured particles form interfacial films, resulting in ordered monolayer depositions manifesting iridescent structural colors. The particle dynamics behind the ordered arrangement is delineated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!