Critical control points in the impact of the proinflammatory immune response on growth and metabolism.

J Anim Sci

United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.

Published: April 2008

Intrinsic in the equation for successful animal production is the efficiency of nutrient use for assimilation into useful animal-derived products. However, when young growing animals encounter various stressors that activate the proinflammatory response (PR), the biochemical effects of the resulting cascade of PR mediators [cytokines, prostaglandin and prosta-cyclin derivatives, nitric oxide (NO), superoxide anion (O2(.-)), etc.] override the regulatory signals normally ascribed to anabolic tissue accretion and growth. The efficiency of energy and nutrient use will proportionally decrease for growth rate due to the redirection of nutrient use to support immune defense processes. These proinflammatory events can develop in association with infectious disease but also are apparent in and a part of the natural response to birth, parturition, and weaning. If growth patterns are tracked during the PR, growth deficits are often apparent. Some growth deficits are relatively transient in duration, whereas others are quite long lasting, persisting although traditional clinical markers of PR are no longer evident. Recent evidence indicates that the PR cascades initiated by cytokines like tumor necrosis factor-alpha play a major role in these growth deficits. Perturbations in mitochondrial energetics and NO and O2(.-) interactions further affect metabolic balance. Free radicals and reactive nitrogen intermediates interact with select molecular targets in proteins (i.e., enzymes, histone proteins, and signal transduction proteins), causing the nitration and nitrosylation of select amino acids. If these posttranslational modifications occur in proteins associated with control points critical in metabolic stability, the resulting altered protein structure blocks its functionality. Attenuation of these overt posttranslational protein modifications at their site of production offers a strategy to minimize their detrimental impact while preserving needed cytokine, NO, and O2(.-) functions.

Download full-text PDF

Source
http://dx.doi.org/10.2527/jas.2007-0634DOI Listing

Publication Analysis

Top Keywords

growth deficits
12
control points
8
growth
7
critical control
4
points impact
4
impact proinflammatory
4
proinflammatory immune
4
immune response
4
response growth
4
growth metabolism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!