Alcohol is the most frequently abused 'addictive substance' that causes serious social problems throughout the world; thus alcoholism is of particular interest in clinical and forensic medicine. Ethyl glucuronide (EtG) is a marker of recent alcohol consumption that detects alcohol use reliably over a definite time period. The present paper describes a new method for the determination of EtG in urine. It was based both on microwave assisted extraction (MAE) to extract the analyte from urine samples, and gas chromatography-mass spectrometry (GC-MS) to identify and quantify the EtG in selected ion monitoring (SIM) mode. The method was applied to 33 urine samples from alcohol users, obtaining positive results in all cases. It was fully validated including a linear range (0.1-100 microg ml(-1)) and the main precision parameters. In summary, the use of microwave assisted extraction turned out to be a substantially simpler, faster and more sensitive procedure than any other conventional sample preparations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.1338 | DOI Listing |
J Phys Chem A
January 2025
College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China.
Microwave-assisted evaporation technology is widely used today, but its molecular mechanism is not fully understood. To investigate the molecular mechanism of the influence of microwave electric field direction on water evaporation, this paper designed experiments to measure the microwave energy required to evaporate each gram of water with electric field directions parallel and perpendicular to the water surface. The temperature rise curve of the water is controlled to be consistent in both cases, and the temperature distribution of the water is made uniform by stirring.
View Article and Find Full Text PDFDalton Trans
January 2025
Center for Research, Innovation, Development, and Applications (CRIDA), Jaiotec Labs (OPC) Private Limited, Amaravati, AP, 522503, India.
The existing demand for the development of innovative multimodal imaging nanomaterial probes for biomedical applications stems from their unique combination of dual response modalities, , photoluminescence (PL) and magnetic resonance imaging (MRI). In this study, for the first time, neodymium (Nd) and dysprosium (Dy) rare earth (RE) metal ions were co-doped into a hydroxyapatite (HAp) crystal lattice using a simple microwave-assisted synthesis technique to incorporate the essential properties of both the lanthanides in HAp. Theoretical as well as experimental studies were performed on novel Nd:Dy:HAp nanoparticles (NPs) to understand their photoluminescence and magnetic behaviour.
View Article and Find Full Text PDFChemSusChem
January 2025
Gebze Technical University, Department of Chemical Engineering, Gebze, 41400, Kocaeli, TURKEY.
This contribution uses a rapid microwave-assisted hydrothermal synthesis method to produce a vanadium-based K1.92Mn0.54V2O5·H2O cathode material (quoted as KMnVOH).
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
School of Natural and Applied Sciences, Department of Chemistry, Mulungushi University, Kabwe, Zambia.
A rapid, simple, and cost-efficient extraction method was developed for evaluating and screening benzo(a)pyrene (BaP) in tea samples by using high performance liquid chromatography (HPLC) with coupled fluorescence detector (FLD) in order to obtain the best extraction performance. In this study, it was observed that when optimized using microwave assisted extraction (MAE) method was performed twice for 2 min using 10 mL n-hexane: acetonitrile (1:3, v/v). The recoveries for BaP in tea were found to be 97 ± 2; 83 ± 8 and 92 ± 6%, respectively.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur Ajmer Express Way Jaipur Rajasthan 303007 India
Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!