Introduction: Based on the assumption that professional groups with frequent chemical exposure are at an increased risk for developing Multiple Chemical Sensitivity (MCS), a sample of 45 professional pest controllers was investigated.
Methods: The examination of the pest controllers consisted of a physical and laboratory examination with urine screening for pyrethroid metabolites, a psychiatric interview, a neuropsychological test battery, and a chemical sensitivity questionnaire.
Results: Persistent or serious work related health problems and chemical sensitivity were not reported. In urine, cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (Br(2)CA) was detected in 11%, 4-fluoro-3-phenoxybenzoic acid (F-PBA) in 7%. 3-phenoxybenzoic acid (3-PBA) exceeded the reference range in 9%, cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (Cl(2)CA) in 20%. Increased liver enzymes and blood count deviations were rather common. 38% had psychiatric disorders. With few exceptions, neuropsychological testing results were normal.
Conclusions: The results do not support the hypothesis that work-related insecticide exposure promotes chemical sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15563650601185126 | DOI Listing |
J Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino (MC), Italy.
Sustainable soil management is essential to conserve soil biodiversity and its provision of vital ecosystem services. The EU Biodiversity Strategy for 2030 highlights the key role of organic farming and land protection in halting biodiversity loss, including edaphic biodiversity. To assess the effectiveness of the proposed measures, a 1-year study was conducted in spring 2022 to determine the soil quality of three organically managed agroecosystems and four sites for each: arable lands, olive groves, and vineyards in the Conero Park, using the arthropod-based Biological Soil Quality Index (QBS-ar) and also considering soil chemical-physical characteristics.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan 416000, P. R. China.
Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.
View Article and Find Full Text PDFAnal Chem
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.
Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!