alpha B-crystallin is a cytoplasmic interaction partner of the kidney-specific cadherin-16.

J Mol Biol

Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University Medical Clinic, Waldhörnlestrasse 22, D-72072 Tübingen, Germany.

Published: April 2008

The Ca(2+)-dependent membrane-spanning classical cadherins bind directly to cytosolic catenins. This cadherin-catenin interaction is known to be critical for the fundamental role of cadherins in cell-cell adhesion. The small subfamily of the 7D-cadherins, however, cannot interact with catenins due to their highly truncated cytoplasmic tail. Thus far, no cytoplasmic interaction partner for the 7D-cadherins has been described. With the use of the cytoplasmic domain of the Ksp (kidney-specific)-cadherin, which belongs to the family of 7D-cadherins, as bait in affinity chromatography with human kidney lysates, the small heat-shock protein alpha B-crystallin was identified by matrix-assisted laser desorption/ionization-time-of-flight analysis as a cytosolic binding partner of Ksp-cadherin. This interaction was verified by co-immunoprecipitation analysis. With the use of overlapping peptides representing the entire alpha B-crystallin molecule, the N-terminal part of alpha B-crystallin, which does not possess chaperone activity, was identified as responsible for the binding to Ksp-cadherin. This interaction was found to be specific since only the cytoplasmic domain of Ksp-cadherin, but not LI (liver-intestine)-cadherin (another member of the 7D-cadherin family), interacted with alpha B-crystallin. In the human kidney, both alpha B-crystallin and Ksp-cadherin co-localize to cells of the collecting duct. They also co-localize with the actin cytoskeleton and co-precipitate with the latter. These findings suggest that the interaction of Ksp-cadherin with alpha B-crystallin is important for the connection of Ksp-cadherin to the cytoskeleton and thus for maintaining tissue integrity in the kidney.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2008.02.008DOI Listing

Publication Analysis

Top Keywords

alpha b-crystallin
28
cytoplasmic interaction
8
interaction partner
8
cytoplasmic domain
8
human kidney
8
ksp-cadherin interaction
8
alpha
7
interaction
6
b-crystallin
6
ksp-cadherin
6

Similar Publications

Background: A strong association between multiple sclerosis (MS) and Epstein-Barr virus (EBV) has been established but the exact role of EBV in MS remains controversial. Recently, molecular mimicry between EBNA1 and specific GlialCAM, CRYAB and ANO2 peptides has been suggested as a possible pathophysiological mechanism. The aim of this study was to analyse anti-EBV antibodies in MS patients against (I) EBV lifecycle proteins, (II) putative cross-reactive peptides, and (III) during treatment.

View Article and Find Full Text PDF

HSPB4 and HSPB5 (α-crystallins) have shown increasing promise as neuroprotective agents, demonstrating several anti-apoptotic and protective roles in disorders such as multiple sclerosis and diabetic retinopathy. HSPs are highly regulated by post-translational modification, including deamidation, glycosylation, and phosphorylation. Among them, T148 phosphorylation has been shown to regulate the structural and functional characteristics of HSPB4 and underlie, in part, its neuroprotective capacity.

View Article and Find Full Text PDF

αB-crystallin is an archetypical member of the small heat shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we ablate a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin implicated in subunit exchange dynamics and client sequestration.

View Article and Find Full Text PDF

Objective: Ischemia-reperfusion (IR) of the aorta is a significant contributor to the development of postoperative acute lung damage after abdominal aortic surgery. The aim of the present study was to examine the effect of alpha B-crystallin, a small heat shock protein (known as HspB5), on lung injury induced by abdominal aortic IR in rats.

Methods: Male Sprague-Dawley rats were divided into three groups: control, ischemia-reperfusion (IR, 90 min ischemia and 180 min reperfusion), and alpha B-crystallin +IR.

View Article and Find Full Text PDF

Almost all types of cellular stress induce post-translational O-GlcNAc modifications of proteins, and this increase promotes cell survival. We previously demonstrated that O-GlcNAc on certain small heat shock proteins (sHSPs), including HSP27, directly increases their chaperone activity as one potential protective mechanism. Here, we furthered our use of synthetic proteins to prepare biotinylated sHSPs and show that O-GlcNAc modification of HSP27 also changes how it interacts within the sHSP system and the broader HSP network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!