Determination of 23 pesticide residues in leafy vegetables using gas chromatography-ion trap mass spectrometry and analyte protectants.

J Chromatogr A

Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, Ourense, Spain.

Published: July 2008

A gas chromatographic method was developed for simultaneously determining residues of 12 insecticides (acrinathrin, bifenthrin, carbofuran, cyfluthrin, lambda-cyhalothrin, cypermethrin, chlorfenvinphos, deltamethrin, esfenvalerate, fenamiphos, methiocarb and tau-fluvalinate) and 11 fungicides (cyprodinil, fludioxonil, iprodione, metalaxyl, penconazole, pyrimethanil, procymidone tebuconazole, triadimefon, triadimenol and vinclozolin) in leafy vegetables. Samples were extracted with acetonitrile and cleaned-up with graphitized carbon black/primary secondary amine (GCB/PSA) solid-phase extraction (SPE) cartridges using acetonitrile:toluene (3:1, v/v) as eluent. The eluate was finally evaporated and redissolved with 0.5 mL of acetone containing the internal standards (pentachlorobenzene and fenpropathrin) and three analyte protectants (3-ethoxy-1,2-propanediol, d-sorbitol and l-gulonic acid gamma-lactone). The addition of analyte protectants allows to avoid the matrix-induced response enhancement effect on quantitation process with absolute recoveries ca. 100%. Precision (expressed as relative standard deviation) was lower than 10% for all pesticides and finally, limits of detection were also 10-20 times lower than maxima residue levels (MRLs) established by European Regulation. The proposed method was applied to determine pesticide residues in commercial leafy vegetables (lettuce, Swiss chard and spinach) purchased from markets in Orense (NW Spain). Pesticide residues were detected in 84% of the total samples (63 from 75 samples) and pesticide concentrations were higher than MRL in 18 samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.02.087DOI Listing

Publication Analysis

Top Keywords

pesticide residues
12
leafy vegetables
12
analyte protectants
12
determination pesticide
4
residues
4
residues leafy
4
vegetables gas
4
gas chromatography-ion
4
chromatography-ion trap
4
trap mass
4

Similar Publications

The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a major pest of various plants with a worldwide distribution. Extensive use of chemical pesticides has led to the development of resistance in this pest, making biological control agents a viable alternative for its management. The predatory mites, Neoseiulus californicus (McGregor) and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) are the most important predators of the two-spotted spider mites.

View Article and Find Full Text PDF

Method Validation for Estimation of Imidacloprid and its Metabolites in Maize and Soil by LCMS-MS.

J Chromatogr Sci

January 2025

Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana 141004, Punjab, India.

Validation of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was performed for estimation of imidacloprid (IM) and its metabolites in maize leaves, immature kernels, mature kernels, stalk, and soil using liquid chromatograph tandem mass spectrometry, coupled with electrospray ionization. The extraction in different matrices of maize and soil was performed using acetonitrile +0.1% formic acid followed by clean-up with primary secondary amine sorbent and anhydrous magnesium sulfate.

View Article and Find Full Text PDF

Nano-TiO as an antimicrobial inorganic material, can stimulate cells to produce reactive oxygen species and exhibit effective biochemical properties; however, phenylpyrazole derivatives, as organic pesticides, are widely used in agriculture and food. To find novel pesticides with environmental friendliness, combined with three-dimensional quantitative structure-activity relationship (3D-QSAR) prediction analysis, three types of alkaloidal phenylpyrazole amine derivatives (PA) were synthesized by a one-pot microwave method. Based on the dye sensitization strategy, four nano-organometallic pesticides (PT) were prepared by organic-inorganic hybridization.

View Article and Find Full Text PDF

Improved Analysis of Glyphosate, Aminomethylphosphonic Acid, and Other Highly Polar Pesticides and Metabolites via the QuPPe Method by Employing Ethylenediaminetetraacetic Acid and IC-MS/MS.

J Agric Food Chem

January 2025

EU-Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM), Chemisches und Veterinäruntersuchungsamt Stuttgart, Fellbach D-70736, Germany.

The quantification of glyphosate (Gly) and its metabolite aminomethylphosphonic acid (AMPA) in food is often impaired by matrix components. Specifically, interaction between the analytes and natural matrix components in food leads to reduced analyte recovery rates. Here, we studied how the addition of ethylenediaminetetraacetic acid (EDTA) impacted the QuPPe recovery rates of Gly and its metabolite in eight mostly problematic matrices using tandem mass spectrometry.

View Article and Find Full Text PDF

Hierarchical structures of surface-accessible plasmonic gold and silver nanoparticles for SERS detection.

Soft Matter

January 2025

Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!