A thorough examination of glucose-dependent insulinotropic polypeptide (GIP) expression has been hampered by difficulty in isolating widely dispersed, GIP-producing enteroendocrine K-cells. To elucidate the molecular mechanisms governing the regulation of GIP expression, 14 intestinal and pancreatic cell lines were assessed for their suitability for studies examining GIP expression. Both STC-1 cells and the pancreatic cell line betaTC-3 were found to express GIP mRNA and secrete biologically active GIP. However, levels of GIP mRNA and bioactive peptide and the activity of transfected GIP reporter constructs were significantly lower in betaTC-3 than STC-1 cells. When betaTC-3 cells were analyzed for transcription factors known to be important for GIP expression, PDX-1 and ISL-1, but not GATA-4, were detected. Double staining for GIP-1 and GATA-4 in mouse duodenum demonstrated GATA-4 expression in intestinal K-cells. Exogenous expression of GATA-4 in betaTC-3 cells led to marked increases in both GIP transcription and secretion. Lastly suppression of GATA-4 via RNA interference, in GTC-1 cells, a subpopulation of STC-1 cells with high endogenous GIP expression resulted in a marked an attenuation of GIP promoter activity. Our data support the hypothesis that GATA-4 may function to augment or enhance GIP expression rather than act as an initiator of GIP transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707930PMC
http://dx.doi.org/10.1016/j.mce.2008.01.024DOI Listing

Publication Analysis

Top Keywords

gip expression
24
gip
13
stc-1 cells
12
expression
9
glucose-dependent insulinotropic
8
insulinotropic polypeptide
8
cells pancreatic
8
expression intestinal
8
pancreatic cell
8
gip mrna
8

Similar Publications

Betagenin ameliorates diabetes by inducing insulin secretion and β-cell proliferation.

J Biol Chem

January 2025

Division of Experimental Animal, Hidaka Branch, Biomedical Research Center, Saitama Medical University, Saitama, Japan; Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. Electronic address:

Recent success with the use of glucagon-like peptide-1 (GLP-1) receptor analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of patients with diabetes has highlighted the role of the intestine as an endocrine organ. Gut-derived hormones, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and ghrelin, have important roles in the control of energy metabolism and food intake, and are associated with the metabolic syndrome. In this study, we isolated and identified a new intestine-derived hormone, betagenin, and showed that it stimulates insulin secretion and β-cell proliferation and suppresses β-cell apoptosis.

View Article and Find Full Text PDF

Previous studies have confirmed that methylation regulates gene transcription in the hypothalamus-pituitary-gonadal axis during puberty initiation, but little is known about the regulation of DNA methylation on gene expression in the pineal gland. To screen pineal gland candidate genes related to the onset of goat puberty and regulated by genome methylation, we collected pineal glands from prepubertal and pubertal female goats, then, determined the DNA methylation profile by whole genome bisulfite sequencing and the transcriptome by RNA sequencing on Illumina HiSeqTM2500. We analyzed differentially expressed genes between the Pre group and Pub group using the DESeq2 software (version 1.

View Article and Find Full Text PDF

Background: Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone.

View Article and Find Full Text PDF

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Effects of Semaglutide and Tirzepatide on Bone Metabolism in Type 2 Diabetic Mice.

Pharmaceuticals (Basel)

December 2024

Department of Endocrinology and Metabolism, Peking University People's Hospital, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China.

Type 2 diabetes and weight loss are associated with detrimental skeletal health. Incretin-based therapies (GLP-1 receptor agonists, and dual GIP/GLP-1 receptor agonists) are used clinically to treat diabetes and obesity. The potential effects of semaglutide and tirzepatide on bone metabolism in type 2 diabetic mice remain uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!