Coordinated ribosomal protein (RP) gene expression is crucial for cellular viability, but the transcriptional network controlling this regulon has only been well characterized in the yeast Saccharomyces cerevisiae. We have used whole-genome transcriptional and location profiling to establish that, in Candida albicans, the RP regulon is controlled by the Myb domain protein Tbf1 working in conjunction with Cbf1. These two factors bind both the promoters of RP genes and the rDNA locus; Tbf1 activates transcription at these loci and is essential. Orthologs of Tbf1 bind TTAGGG telomeric repeats in most eukaryotes, and TTAGGG cis-elements are present upstream of RP genes in plants and fungi, suggesting that Tbf1 was involved in both functions in ancestral eukaryotes. In all Hemiascomycetes, Rap1 substituted Tbf1 at telomeres and, in the S. cerevisiae lineage, this substitution also occurred independently at RP genes, illustrating the extreme adaptability and flexibility of transcriptional regulatory networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838363PMC
http://dx.doi.org/10.1016/j.molcel.2008.02.006DOI Listing

Publication Analysis

Top Keywords

tbf1
5
transcription factor
4
factor substitution
4
substitution evolution
4
evolution fungal
4
fungal ribosome
4
ribosome regulation
4
regulation coordinated
4
coordinated ribosomal
4
ribosomal protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!