Processing of vestibular information at the cortical and subcortical level is essential for head and body orientation in space and self-motion perception, but little is known about the neural dynamics of the brain regions of the vestibular system involved in this task. Neuroimaging studies using both galvanic and caloric stimulation have shown that several distinct cortical and subcortical structures can be activated during vestibular information processing. The insular cortex has been often targeted and presented as the central hub of the vestibular cortical system. Since very short pulses of cold water ear irrigation can generate a strong and prolonged vestibular response and a nystagmus, we explored the effects of this type of caloric stimulation for assessing the blood-oxygen-level-dependent (BOLD) dynamics of neural vestibular processing in a whole-brain event-related functional magnetic resonance imaging (fMRI) experiment. We evaluated the spatial layout and the temporal dynamics of the activated cortical and subcortical regions in time-locking with the instant of injection and were able to extract a robust pattern of neural activity involving the contra-lateral insular cortex, the thalamus, the brainstem and the cerebellum. No significant correlation with the temporal envelope of the nystagmus was found. The temporal analysis of the activation profiles highlighted a significantly longer duration of the evoked BOLD activity in the brainstem compared to the insular cortex suggesting a functional de-coupling between cortical and subcortical activity during the vestibular response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2008.01.042DOI Listing

Publication Analysis

Top Keywords

cortical subcortical
16
vestibular processing
12
caloric stimulation
12
insular cortex
12
vestibular
8
vestibular cortical
8
vestibular response
8
cortical
5
spatio-temporal pattern
4
pattern vestibular
4

Similar Publications

Background: White matter (WM) is a principal component of the human brain, forming the structural basis for neural transmission between cortico-cortical and subcortical structures. The impairment of WM integrity is closely associated with the aging process, manifesting as the reorganization of brain networks based on graph theoretical analysis of complex networks and increased volume of white matter hyperintensities (WMHs) in imaging studies.

Methods: This study investigated changes in the robustness of WM brain networks during aging and assessed their correlation with WMHs.

View Article and Find Full Text PDF

Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.

Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.

View Article and Find Full Text PDF

Corticolimbic circuitry as a druggable target in schizophrenia spectrum disorders: a narrative review.

Transl Psychiatry

January 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Schizophrenia spectrum disorders (SSD) involve disturbances in the integration of perception, emotion and cognition. The corticolimbic system is an interacting set of cortical and subcortical brain regions critically involved in this process. Understanding how neural circuitry and molecular mechanisms within this corticolimbic system may contribute to the development of not only positive symptoms but also negative and cognitive deficits in SSD has been a recent focus of intense research, as the latter are not adequately treated by current antipsychotic medications and are more strongly associated with poorer functioning and long-term outcomes.

View Article and Find Full Text PDF

The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.

View Article and Find Full Text PDF

Background And Objectives: Although multiple sclerosis (MS) can be conceptualized as a network disorder, brain network analyses typically require advanced MRI sequences not commonly acquired in clinical practice. Using conventional MRI, we assessed cross-sectional and longitudinal structural disconnection and morphometric similarity networks in people with MS (pwMS), along with their relationship with clinical disability.

Methods: In this longitudinal monocentric study, 3T structural MRI of pwMS and healthy controls (HC) was retrospectively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!