This paper presents an overview of recent progress in spectroscopic studies of the energetic nitroimine 4,6-bis(nitroimino)-1,3,5-triazinan-2-one (DNAM), based on experimental and theoretical data. The following topics are considered: variable temperature FTIR spectroscopy (4000-400 cm(-1)) applied to the study of natural and isotopically substituted (deuterated) samples aiming to obtain a successful vibrational assignment of the spectra and to investigate H-bonding interactions; extensive theoretical work based on accurate quantum chemical calculations (ab initio MP2 and DFT/B3LYP; harmonic and anharmonic vibrational calculations) to model and help interpreting the experimental findings, as well as to provide fundamental data on this simple prototype nitroimine that can be used as a starting point to the study of more complex related compounds. This work allowed us to reveal detailed features of the IR spectrum of the title compound, presenting, for the first time, plausible assignments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp711153gDOI Listing

Publication Analysis

Top Keywords

energetic nitroimine
8
low-temperature ftir
4
ftir spectroscopic
4
spectroscopic theoretical
4
theoretical study
4
study energetic
4
nitroimine dinitroammeline
4
dinitroammeline dnam
4
dnam paper
4
paper presents
4

Similar Publications

This paper presents an overview of recent progress in spectroscopic studies of the energetic nitroimine 4,6-bis(nitroimino)-1,3,5-triazinan-2-one (DNAM), based on experimental and theoretical data. The following topics are considered: variable temperature FTIR spectroscopy (4000-400 cm(-1)) applied to the study of natural and isotopically substituted (deuterated) samples aiming to obtain a successful vibrational assignment of the spectra and to investigate H-bonding interactions; extensive theoretical work based on accurate quantum chemical calculations (ab initio MP2 and DFT/B3LYP; harmonic and anharmonic vibrational calculations) to model and help interpreting the experimental findings, as well as to provide fundamental data on this simple prototype nitroimine that can be used as a starting point to the study of more complex related compounds. This work allowed us to reveal detailed features of the IR spectrum of the title compound, presenting, for the first time, plausible assignments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!