This paper presents an overview of recent progress in spectroscopic studies of the energetic nitroimine 4,6-bis(nitroimino)-1,3,5-triazinan-2-one (DNAM), based on experimental and theoretical data. The following topics are considered: variable temperature FTIR spectroscopy (4000-400 cm(-1)) applied to the study of natural and isotopically substituted (deuterated) samples aiming to obtain a successful vibrational assignment of the spectra and to investigate H-bonding interactions; extensive theoretical work based on accurate quantum chemical calculations (ab initio MP2 and DFT/B3LYP; harmonic and anharmonic vibrational calculations) to model and help interpreting the experimental findings, as well as to provide fundamental data on this simple prototype nitroimine that can be used as a starting point to the study of more complex related compounds. This work allowed us to reveal detailed features of the IR spectrum of the title compound, presenting, for the first time, plausible assignments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp711153g | DOI Listing |
J Phys Chem A
April 2008
Department of Chemical Engineering, University of Coimbra, P-3030-790 Coimbra, Portugal.
This paper presents an overview of recent progress in spectroscopic studies of the energetic nitroimine 4,6-bis(nitroimino)-1,3,5-triazinan-2-one (DNAM), based on experimental and theoretical data. The following topics are considered: variable temperature FTIR spectroscopy (4000-400 cm(-1)) applied to the study of natural and isotopically substituted (deuterated) samples aiming to obtain a successful vibrational assignment of the spectra and to investigate H-bonding interactions; extensive theoretical work based on accurate quantum chemical calculations (ab initio MP2 and DFT/B3LYP; harmonic and anharmonic vibrational calculations) to model and help interpreting the experimental findings, as well as to provide fundamental data on this simple prototype nitroimine that can be used as a starting point to the study of more complex related compounds. This work allowed us to reveal detailed features of the IR spectrum of the title compound, presenting, for the first time, plausible assignments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!