The genome of Caenorhabditis elegans encodes for 18 putative nucleotide sugar transporters even though its glycome only contains 7 different monosaccharides. To understand the biological significance of this phenomenon, we have begun a systematic substrate characterization of the above putative transporters and have determined that the gene ZK896.9 encodes a Golgi apparatus transporter for UDP-glucose, UDP-galactose, UDP- N-acetylglucosamine, and UDP- N-acetylgalactosamine. This is the first tetrasubstrate nucleotide sugar transporter characterized for any organism and is also the first nonplant transporter for UDP-glucose. Evidence for the above substrate specificity and substrate transport saturation kinetics was obtained by expression of ZK896.9 in Saccharomyces cerevisiae followed by Golgi enriched vesicle isolation and assays in vitro. Further evidence for UDP-glucose transport was obtained by expression of ZK 896.9 in Giardia lamblia, an organism recently characterized as having endogenous transport activity for only UDP- N-acetylglucosamine. Expression of ZK896.9 was also able to correct the phenotype of a mutant Chinese ovary cell line specifically defective in the transport of UDP-galactose into the Golgi apparatus and of a mutant of the yeast Kluyveromyces lactis specifically defective in the transport of UDP- N-acetylglucosamine into its Golgi apparatus. Because up to now all three other characterized nucleotide sugar transporters of C. elegans have been found to transport two or three substrates, the substrate specificity of ZK896.9 raises questions as to the evolutionary ancestry of this group of proteins in this nematode.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi702468gDOI Listing

Publication Analysis

Top Keywords

transporter udp-glucose
12
nucleotide sugar
12
golgi apparatus
12
udp- n-acetylglucosamine
12
caenorhabditis elegans
8
udp-glucose udp-galactose
8
sugar transporters
8
substrate specificity
8
expression zk8969
8
defective transport
8

Similar Publications

sp. KMM 8419 (=CB1-14) is a Gram-negative bacterium isolated from a food-net mucus sample of marine polychaete collected in the Sea of Japan. Here, we report the structure and biosynthetic gene cluster of the capsular polysaccharide (CPS) from strain KMM 8419.

View Article and Find Full Text PDF

Maternal bisphenol A (BPA) exposure induces placental dysfunction and health risk in adult female offspring: Insights from a mouse model.

Sci Total Environ

December 2024

Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China.

Bisphenol A (BPA) is an endocrine disruptor that poses multiple risks to human health. In particular, the potential adverse effects of maternal exposure to BPA on offspring warrant further investigation. In this study, pregnant mice were exposed to BPA throughout gestation and the effects of BPA on placental function, fetal development, and health risks in adult offspring were assessed.

View Article and Find Full Text PDF

This study investigated the effects of a single dose of desvenlafaxine via oral administration on the pharmacokinetic parameters and clinical and laboratory characteristics in healthy volunteers using a pharmacometabolomics approach. In order to optimize desvenlafaxine's therapeutic use and minimize potential adverse effects, this knowledge is essential. Thirty-five healthy volunteers were enrolled after a health trial and received a single dose of desvenlafaxine (Pristiq, 100 mg).

View Article and Find Full Text PDF

High-temperature (HT) stress frequently affects the early and middle stages of grain filling in hybrid seed production regions. Photo-thermo-sensitive male-sterile (PTMS) wheat lines, which play a critical role as female parents in hybrid seed production, face challenges under HT conditions. However, the mechanisms governing grain filling in PTMS lines under HT stress remain poorly understood.

View Article and Find Full Text PDF

Genome-wide association study identifies the genetic basis of key agronomic traits in 207 sugar beet accessions.

Hortic Res

October 2024

Inner Mongolia Academy of Science and Technology, Hohhot , Inner Mongolia, 010000, China.

Sugar beet (Beta vulgaris) has emerged as one of the two primary crops, alongside sugarcane, for global sugar production. Comprehensively understanding sucrose synthesis, transport, and accumulation in sugar beet holds great significance for enhancing sugar production. In this study, we collected a diverse set of 269 sugar beet accessions worldwide and measured 12 phenotypes, comprising biomass, soluble sugar content, and 10 taproot-related traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!