Angular pyrrolocoumarins were synthesized from the reaction of 4-hydroxyindole or 5-hydroxyindole with DMAD and PPh(3) and were tested for anti-inflammatory and antioxidant activity. These compounds significantly inhibited the carrageenin-induced paw edema (60.5%-73.4%) and have important scavenging activity. Although their interaction with the free stable radical DPPH is not high, compound 9 is the most potent (73.4%) in the in vivo experiment. Compound 7 seems to be a potent LOX inhibitor. An attempt was made to correlate the biological results with their structural characteristics and physicochemical parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14756360701400801DOI Listing

Publication Analysis

Top Keywords

compound potent
8
synthesis biological
4
biological evaluation
4
evaluation novel
4
novel angular
4
angular fused
4
fused pyrrolocoumarins
4
pyrrolocoumarins angular
4
angular pyrrolocoumarins
4
pyrrolocoumarins synthesized
4

Similar Publications

Fungal specialized metabolites are known for their potent biological activities, among which tropolone sesquiterpenoids (TS) stand out for their diverse bioactivities. Here, we report cytotoxic and proliferation inhibitory effects of the recently discovered TS compounds 4-hydroxyxenovulene B and 4-dihydroxy norpycnidione, and the structurally related 4-hydroxy norxenovulene B and xenovulene B. Inhibition of metabolic activity after TS treatment was observed in Jurkat, PC-3 and FAIK3-5 cells, whereas MDA-MB-231 cells were unresponsive to treatment.

View Article and Find Full Text PDF

Four organotin(IV) carboxylate complexes; (CH)SnL (), CHSnL (), (CH)SnL () and (CH)SnL () are synthesized by the condensation reaction of organotin(IV) chlorides with sodium-4-chloro-2-methylphenoxyacetate (). The FT-IR spectra suggested bridging/chelating bidentate coordination of the ligand to the tin atom. Single-crystal XRD analysis authenticated the FT-IR findings for and .

View Article and Find Full Text PDF

A Simple and Sensitive LC-MS/MS Method for the Determination of Mobocertinib and Its Metabolite Desmethyl-Mobocertinib in Human Plasma and Its Application to Clinical Pharmacokinetic Study.

Biomed Chromatogr

February 2025

Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China.

Mobocertinib is a potent selective tyrosine kinase inhibitor approved for the treatment of non-small cell lung cancer with activating EGFR exon 20 insertions. The aim of this study was to develop a procedure for liquid chromatography tandem mass spectrometry (LC-MS/MS) for the determination of mobocertinib and its metabolite desmethyl-mobocertinib in human plasma. The human plasma samples were precipitated with acetonitrile and analyzed using a Waters ACQUITY BEH C column coupled to a triple quadrupole mass spectrometer.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) stands as a formidable global health challenge, often advancing to end-stage renal disease (ESRD) with devastating morbidity and mortality. At the central of this progression lies podocyte injury, a critical determinant of glomerular dysfunction. Compound K (CK), a bioactive metabolite derived from ginsenoside, has emerged as a compelling candidate for nephroprotective therapy.

View Article and Find Full Text PDF

Variants of SARS-CoV-2 have continued to emerge across the world and cause hundreds of deaths each week. Due to the limited efficacy of vaccines against SARS-CoV-2 and resistance to current therapies, additional anti-viral therapeutics with pan-coronavirus activity are of high interest. Here, we screen 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!