Some novel fused heterocyclic compounds of 2, 5-disubstituted-benzoxazole and benzimidazole derivatives, which were previously synthesized by our group, were investigated for their inhibitory activity on both eukaryotic DNA topoisomerase I and II in a cell free system. 2-Phenoxymethylbenzimidazole (17), 5-amino-2-(p-fluorophenyl)benzoxazole (3), 5-amino-2-(p-bromophenyl)benzoxazole (5), 5-nitro-2-phenoxymethyl-benzimidazole (18), 2-(p-chlorobenzyl)benzoxazole (10) and 5-amino-2-phenylbenzoxazole (2) were found to be more potent as eukaryotic DNA topoisomerase I poisons than the reference drug camptothecin having IC(50) values of 14.1, 132.3, 134.1, 248, 443.5, and 495 microM, respectively. 5-Chloro-2-(p-methylphenyl)benzoxazole (4), 2-(p-nitrobenzyl)benzoxazole (6) and 5-nitro-2-(p-nitrobenzyl)benzoxazole (8) exhibited significant activity as eukaryotic DNA topoisomerase II inhibitors, having IC(50) values of 22.3, 17.4, 91.41 microM, respectively, showing higher potency than the reference drug etoposide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14756360701342516 | DOI Listing |
Alternative Lengthening of Telomeres (ALT) is a homologous recombination-dependent telomere elongation mechanism utilized by at least 10-15% of all cancers. Here we identified that the DNA topoisomerase, TOP3A is enriched at the telomeres of ALT cells but not at the telomeres of telomerase-positive (Tel) cancer cells. We demonstrate that TOP3A stabilizes the shelterin protein TERF2 in ALT cancer cell lines but not in Tel cells and that long non-coding telomere transcribed RNA (TERRA) enrichment at telomeres depends upon TOP3A.
View Article and Find Full Text PDFTranscription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .
View Article and Find Full Text PDFExp Parasitol
January 2025
Department of Biotechnology, Savitribai Phule Pune University, 411007, Pune, India. Electronic address:
Visceral leishmaniasis (VL) is an opportunistic infection in HIV patients with higher relapse and mortality rate. The number of HIV-VL patients is comparatively higher in areas where both infections are endemic. However, the conventional chemotherapeutic agents have limited success due to drug toxicity, efficacy variance and overall cost of treatment.
View Article and Find Full Text PDFVet Microbiol
January 2025
Purdue University, Department of Animal Sciences, West Lafayette, IN 47907 USA. Electronic address:
Mannheimia haemolytica is one of the most common causative agents of bovine respiratory disease (BRD); however, antibiotic resistance in this species is increasing, making treatment more difficult. Integrative-conjugative elements (ICE), a subset of mobile genetic elements (MGE), encoding up to 100 genes have been reported in Mannheimia haemolytica genomes to confer multidrug resistance, including resistance to antibiotics commonly used in the treatment of BRD. However, the presence of antibiotic resistance genes (ARGs) does not always agree with phenotypic resistance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, UK.
DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!