Proteasome inhibitor does not enhance MPTP neurotoxicity in mice.

Cell Mol Neurobiol

Department of Neurobiology and Therapeutics, Graduate School and Faculty of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan.

Published: November 2008

Dysfunction of the proteasome function is known to be a potential mechanism for dopaminergic neuron degeneration. Here, we investigated to determine whether systematic administration of proteasome inhibitor, carbobenzoxy-L-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI), causes the increased susceptibility in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. PSI was injected into MPTP-treated mice over a period of 2 weeks. Thereafter, we evaluated the effect of PSI 2, 4, and 8 weeks after the cessation of treatment with PSI. In the present study with HPLC analysis, PSI did not enhance MPTP-induced dopaminergic neurotoxicity in mice. Our present study with Western blot analysis also demonstrated that the reduction of tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) protein levels in MPTP-treated mice was more pronounced than that in MPTP + PSI-treated animals. These results suggest that proteasome inhibitor did not enhance MPTP neurotoxicity in mice. Our findings suggest that proteasome inhibition is not a reliable model for PD. Thus, our findings provide further valuable information for the pathogenesis of Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-008-9271-4DOI Listing

Publication Analysis

Top Keywords

proteasome inhibitor
12
neurotoxicity mice
12
mptp-treated mice
12
inhibitor enhance
8
enhance mptp
8
mptp neurotoxicity
8
mice
6
proteasome
5
psi
5
mice dysfunction
4

Similar Publications

PI31 ( P roteasome Inhibitor of 31 ,000 Da) is a 20S proteasome-binding protein originally identified as an inhibitor of 20S proteasome activity. Although recent studies have provided a detailed structural basis for this activity, the physiologic significance of PI31-mediated proteasome inhibition remains uncertain and alternative cellular roles for PI31 have been described. Here we report a role for PI31 as a positive regulator for the assembly of the 20S immuno-proteasome (20Si), a compositionally and functionally distinct isoform of the proteasome that is poorly inhibited by PI31.

View Article and Find Full Text PDF

Multiple myeloma is characterized by malignant cells which produce high amounts of monoclonal immunoglobulin. Myeloma cells are, therefore, dependent on effective protein degradation. Proteasomal protein degradation is targeted by proteasome inhibitors in routine care.

View Article and Find Full Text PDF

Background: Immunotherapy is a significant risk factor for severe COVID-19 in multiple myeloma (MM) patients. Understanding how immunotherapies lead to severe COVID-19 is crucial for improving patient outcomes.

Methods: Human protein microarrays were used to examine the expression of 440 protein molecules in MM patients treated with bispecific T-cell engagers (BiTe) (n = 9), anti-CD38 monoclonal antibodies (mAbs) (n = 10), and proteasome inhibitor (PI)-based regimens (n = 10).

View Article and Find Full Text PDF

Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.

View Article and Find Full Text PDF

Bortezomib enhances the efficacy of BCMA CAR-T therapy through up-regulating BCMA expression in myeloma cells.

Int Immunopharmacol

January 2025

Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan Province, People's Republic of China. Electronic address:

Chimeric antigen receptor T (CAR-T) cell therapy targeting B cell mature antigen (BCMA) has shown remarkable clinical benefits in treating multiple myeloma (MM). Bortezomib, a proteasome inhibitor approved as a first-line agent for MM for two decades, has demonstrated potent antitumor activity. In this study, we found that bortezomib treatment stabilizes the expression of BCMA and conceived the hypothesis that BCMA CAR-T therapy combined with bortezomib would enhance the anti-MM efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!