Eur J Appl Physiol
Department of Sport Science, University of Aarhus, Dalgas Avenue 4, 8000 Aarhus C, Denmark.
Published: June 2008
The purpose of this study was to compare the responsiveness of changes in Ca(2+)-content and calpain-calpastatin gene expression to concentric and eccentric single-bout and repeated exercise. An exercise group (n = 14) performed two bouts of bench-stepping exercise with 8 weeks between exercise bouts, and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified for muscle Ca(2+)-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P < 0.05). These responses as well as plasma levels of creatine kinase and myoglobin were all attenuated after the repeated eccentric exercise bout (P < 0.05). Total muscle Ca(2+)-content did not differ between interventions. mRNA levels for calpain 2 and calpastatin were upregulated exclusively by eccentric exercise 24 h post-exercise (P < 0.05), with no alteration in expression between bouts. Calpain 1 and calpain 3 mRNA did not change at any specific time point post-exercise for either intervention. Our mRNA results suggest a regulation on the calpain-calpastatin expression response to muscle damaging eccentric exercise, but not concentric exercise. Although a repeated bout effect was demonstrated in terms of muscle function, no immediate support was provided to suggest that regulation of expression of specific system components is involved in the repeated bout adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-008-0709-7 | DOI Listing |
J Ultrason
December 2024
Faculty of Exercise Physiology, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, United States.
Aim: The Nordic hamstring curl appears effective in reducing the incidence of injury in physically active young adults, likely through its capacity as an eccentric exercise to increase muscle stiffness. Although eccentric exercises have been shown to increase muscle stiffness, medium- and long-term Nordic hamstring curl training programs have not demonstrated an effect on muscle stiffness. This study examined the acute effects of a single session of Nordic hamstring curls on the stiffness of the biceps femoris, semitendinosus, and semimembranosus muscles using ultrasound shear wave elastography, an accepted method for measuring passive muscle stiffness.
View Article and Find Full Text PDFInt J Cardiol Cardiovasc Risk Prev
March 2025
Division of Cardiology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan.
Background: Long-term exercise training induces various morphological adaptations in the heart. Although concentric left ventricular (LV) geometry is occasionally observed in young athletes, its clinical significance is unclear. This study aimed to investigate the characteristics of young rugby athletes with concentric LV geometry and considered its clinical implications.
View Article and Find Full Text PDFMonaldi Arch Chest Dis
January 2025
Department of Human Neurosciences, Sapienza University, Rome.
In the last few years, we have seen the gradual spread of a new treadmill training modality, which involves walking not on the flat but downhill, also known as "downhill". This review aims to qualitatively assess the efficacy of downhill treatment on different patient populations and outline treatment routes for future efficacy studies. We searched five different databases: MEDLINE, SCOPUS, Web of Science, PEDro, and LILACS for studies to include.
View Article and Find Full Text PDFFASEB J
January 2025
Shirley Ryan AbilityLab, Chicago, Illinois, USA.
Following injury, skeletal muscle undergoes repair via satellite cell (SC)-mediated myogenic progression. In SCs, the circadian molecular clock gene, Bmal1, is necessary for appropriate myogenic progression and repair with evidence that muscle molecular clocks can also affect force production. Utilizing a mouse model allowing for inducible depletion of Bmal1 within SCs, we determined contractile function, SC myogenic progression and muscle damage and repair following eccentric contractile-induced injury.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
Grammenou, M, Kendall, KL, Wilson, CJ, Porter, T, Laws, SM, and Haff, GG. Effect of fitness level on time course of recovery after acute strength and high-intensity interval training. J Strength Cond Res 38(12): 2055-2064, 2024-The aim was to investigate time course of recovery after acute bouts of strength (STR) and high-intensity interval training (HIIT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.