From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens.

Appl Microbiol Biotechnol

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Daejeon, Republic of Korea.

Published: May 2008

Mannheimia succiniciproducens is a capnophilic gram-negative bacterium isolated from bovine rumen. Wild-type M. succiniciproducens can produce succinic acid as a major fermentation product with acetic, formic, and lactic acids as byproducts during the anaerobic cultivation using several different carbon sources. Succinic acid is an important C4 building block chemical for many applications. Here, we review the progress made with M. succiniciproducens for efficient succinic acid production; the approaches taken towards the development of an integrated process for succinic acid production are described, which include strain isolation and characterization, complete genome sequencing and annotation, development of genetic tools for metabolic engineering, strain development by systems approach of integrating omics and in silico metabolic analysis, and development of fermentation and recovery processes. We also describe our current effort on further improving the performance of M. succiniciproducens and optimizing the mid- and downstream processes. Finally, we finish this mini-review by discussing the issues that need to be addressed to make this process of fermentative succinic acid production employing M. succiniciproducens to reach the industrial-scale process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-008-1424-3DOI Listing

Publication Analysis

Top Keywords

succinic acid
24
acid production
16
mannheimia succiniciproducens
8
succinic
6
acid
6
succiniciproducens
6
genome sequence
4
sequence integrated
4
integrated bioprocess
4
bioprocess succinic
4

Similar Publications

Cation-Vacancy Engineering in Cobalt Selenide Boosts Electrocatalytic Upcycling of Polyester Thermoplastics at Industrial-Level Current Density.

Adv Mater

January 2025

State Key Laboratory of Organic-Inorganic Composites, State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

The past decades have witnessed the increasing accumulation of plastics, posing a daunting environmental crisis. Among various solutions, converting plastics into value-added products presents a significant endeavor. Here, an electrocatalytic upcycling route that efficiently converts waste poly(butylene terephthalate) plastics into high-value succinic acid with high Faradaic efficiency of 94.

View Article and Find Full Text PDF

Hypoxia poses a serious challenge for all animals; however, certain animals exhibit a remarkable resilience in the case of prolonged and severe hypoxia. The Siberian wood frog is a unique amphibian capable of surviving for up to several months at almost complete anoxia. We investigated changes in the metabolome of at the onset of hypoxia (day 1) and within 1 h of reoxygenation after a long-term hypoxia using H NMR.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Asthma has been extensively studied in humans and animals, but the molecular mechanisms underlying asthma in Meishan pigs, a breed with distinct genetic and physiological characteristics, remain elusive. Understanding these mechanisms could provide insights into veterinary medicine and human asthma research. We investigated asthma pathogenesis in Meishan pigs through transcriptomic and metabolomic analyses of blood samples taken during autumn and winter.

View Article and Find Full Text PDF

Polybutylene succinate (PBS), a biodegradable plastic, can be used as an alternative to traditional plastics to effectively solve the growing plastic pollution. Although PBS is theoretically completely biodegradable, slow degradation remains a problem in practical applications, leading to the possibility of environmental pollution. In this study, after the PBS degradation ability of the fungus Paraphoma chrysanthemicola was determined, a P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!