AI Article Synopsis

  • Angiopoietin-like protein 4 (Angptl4) is involved in regulating blood vessel formation and cancer spread, and this study explores how it functions at a molecular level.
  • The study discovered that Angptl4 is cleaved into two parts, N-Angptl4 and C-Angptl4, identifying key sites for this cleavage and finding that C-Angptl4 effectively inhibits cell growth and movement related to blood vessel formation.
  • The research suggests that C-Angptl4 stops angiogenesis by interfering with specific molecular pathways (like the Raf/MEK/ERK1/2 pathway) in endothelial cells, indicating it could play a significant role in medical applications related

Article Abstract

Objective: Angiopoietin-like protein 4 (Angptl4) is a secreted glycoprotein that has recently been implicated in the regulation of angiogenesis and metastasis. This study aimed to investigate the structural and cellular basis underlying the biological actions of Angptl4.

Methods And Results: Circulating Angptl4 was proteolytically cleaved into NH2-terminal coiled-coil domain (N-Angptl4) and COOH-terminal fibrinogen-like domain (C-Angptl4). Using amino acid sequencing analysis, we identified a major cleavage site between Lys(168) and Leu(169) and a minor cleavage site between Lys(170) and Met(171) in mouse Angptl4. C-Angptl4, but not N-Angptl4, potently inhibited both bFGF- and VEGF-induced cell proliferation, migration, and tubule formation in endothelial cells, and prevented neovascularization in mice. Treatment of C-Angptl4 with PNGase F (an N-glycosidase) ablated its N-linked glycosylation, and also significantly attenuated its antiangiogenic activities. C-Angptl4 blocked bFGF-induced activation of ERK1/2 MAP kinase, but had no obvious effect on Akt and P38 MAP kinase. Furthermore, C-Angptl4 abrogated bFGF-induced phosphorylation of Raf-1 and MEK1/2, whereas neither auto-phosphorylation of FGF receptor-1 nor activation of Ras was affected, suggesting that the blockage occurs at the level of Raf-1 activation.

Conclusions: The carboxyl terminus of Angptl4 alone is sufficient to suppress angiogenesis, possibly through inhibiting the Raf/MEK/ERK1/2 MAP kinase pathway in endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.107.157776DOI Listing

Publication Analysis

Top Keywords

map kinase
12
carboxyl terminus
8
angiopoietin-like protein
8
cleavage site
8
endothelial cells
8
c-angptl4
5
suppression raf/mek/erk
4
raf/mek/erk signaling
4
signaling cascade
4
cascade inhibition
4

Similar Publications

4-O-Methylglucuronoxylan from Hygrophila Ringens var. Ringens Seeds: Chemical Composition and Anti-Inflammatory Activity.

Macromol Biosci

January 2025

Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Center of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743, Jena, Germany.

Hygrophila ringens var. ringens is a medicinal plant of the Acanthaceae family. A soluble polysaccharide is extracted from H.

View Article and Find Full Text PDF

The V600E mutation aberrantly activates the mitogen-activated protein kinase (MAPK) pathway, subsequently resulting in uncontrolled cellular proliferation, survival, and dedifferentiation. Approximately 2% of patients with non-small cell lung cancer (NSCLC) have a V600E mutation. BRAF and MEK inhibitor combination therapy targets two kinases within the MAPK pathway.

View Article and Find Full Text PDF

In motoneurons, spatiotemporal dendritic patterns are established in the ventral nerve cord. While many guidance cues have been identified, the mechanisms of temporal regulation remain unknown. Previously, we identified the actin modulator Cdc42 GTPase as a key factor in this process.

View Article and Find Full Text PDF

Angiotensin III activates ERK1/2 mitogen activated protein kinases and proliferation of rat vascular smooth muscle cells.

J Recept Signal Transduct Res

January 2025

Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.

The proliferative effects of angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) through its ability to stimulate extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway have been established. The main goal of this study was to explore whether Ang III induces ERK1/2 MAPK and VSMC proliferation in cultured Wistar VSMCs. Further, the Ang III actions were compared to those observed in VSMCs derived from the spontaneously hypertensive rat (SHR).

View Article and Find Full Text PDF

Repurposing bosentan as an anticancer agent: EGFR/ERK/c-Jun modulation inhibits NSCLC tumor growth.

Fundam Clin Pharmacol

February 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.

Drug repurposing of well-established drugs to be targeted against lung cancer has been a promising strategy. Bosentan is an endothelin 1 (ET-1) blocker widely used in pulmonary hypertension. The current experiment intends to inspect the anticancer and antiangiogenic mechanism of bosentan targeting epidermal growth factor receptor (EGFR) /extra-cellular Signal Regulated Kinase (ERK) /c-Jun/vascular endothelial growth factor (VEGF) carcinogenic pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!