Scaffold proteins link signaling molecules into linear pathways by physically assembling them into complexes. Scaffolds may also have a higher-order role as signal-processing hubs, serving as the target of feedback loops that optimize signaling amplitude and timing. We demonstrate that the Ste5 scaffold protein can be used as a platform to systematically reshape output of the yeast mating MAP kinase pathway. We constructed synthetic positive- and negative-feedback loops by dynamically regulating recruitment of pathway modulators to an artificial binding site on Ste5. These engineered circuits yielded diverse behaviors: ultrasensitive dose response, accelerated or delayed response times, and tunable adaptation. Protein scaffolds provide a flexible platform for reprogramming cellular responses and could be exploited to engineer cells with novel therapeutic and biotechnological functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1151153 | DOI Listing |
J Cell Mol Med
January 2025
Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkiye.
siRNA-loaded nanoparticles open new perspectives for cancer treatment. MAPK6 is upregulated in breast cancer and is involved in cell growth, differentiation and cell cycle regulation. Herein, we aimed to investigate the anticancer effects of MAPK6 knockdown by using MAPK6 siRNA-loaded PLGA nanoparticles (siMAPK6-PLGA-NPs) in MCF-7 breast cancer cells.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Neurosurgery, First Affiliated Hospital of Xiamen University; School of Medicine, Xiamen University, Xiamen, China.
Purpose: To explore the impact of high body mass index (BMI) on the embryo quality and clinical outcomes of polycystic ovary syndrome (PCOS) patients, and the possible genes involved.
Methods: Patients who underwent in-vitro fertilization (IVF) treatment and embryo transfer in our center from November 2014 to September 2023, were divided into low BMI PCOS (LBP) group, high BMI PCOS (HBP) group, and high BMI control (HBC) group. Transcriptome sequencing was performed in eight PCOS patients' granulosa cells (GCs).
Inflamm Res
January 2025
Institute of Otolaryngology head and neck surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
Objective: This study seeks to elucidate the role and molecular mechanisms of IL-8 in nasal epithelial cell pyroptosis and its impact on glucocorticoid (GC) resistance.
Methods: We assessed the expression of pyroptosis-related biomarkers and IL-8 in tissues and human nasal epithelial cells (hNECs) from both control and nasal polyp patients using western blot. Their localization was determined through immunohistochemistry and immunofluorescence.
PLoS One
January 2025
Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom.
Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
January 2025
Department of Cardiology, Sanya Central Hospital, Sanya 572000, China.
Objectives: To explore the mechanism that mediate the therapeutic effect of quercetin on heart failure.
Methods: We searched the TCMSP and Swiss ADME databases for the therapeutic targets of quercetin and retrieved heart failure targets from the Genecards and OMIM databases. The intersecting targets were analyzed with GO and KEGG pathway analysis using DAVID database, and the key genes were identified PPI analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!