AI Article Synopsis

  • The study investigates the covalent structure of human IgG2 antibodies, revealing distinct forms caused by different disulfide bond arrangements.
  • Three main structures of IgG2 are identified: IgG2-A (the classic structure), IgG2-B (a symmetrical complex), and IgG2-A/B (an intermediate asymmetrical form).
  • These structural isoforms, found in both myeloma plasma and normal serum, show that disulfide bond variations are a natural attribute of human IgG2 antibodies.

Article Abstract

In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C(L)) and the heavy chain C(H)1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C(H)1-C(L)-hinge)(2) complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either kappa or lambda light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259661PMC
http://dx.doi.org/10.1074/jbc.M709987200DOI Listing

Publication Analysis

Top Keywords

human igg2
32
igg2 subclass
16
structural isoforms
12
covalently linked
12
human
8
igg2 antibodies
8
structure human
8
igg2
8
light chain
8
disulfide bonds
8

Similar Publications

Understanding the dynamics of antibody responses following vaccination and SARS-CoV-2 infection is important for informing effective vaccination strategies and other public health interventions. This study investigates SARS-CoV-2 antibody dynamics in a Puerto Rican cohort, analyzing how IgG levels vary by vaccination status and previous infection. We assess waning immunity and the distribution of hybrid immunity with the aim to inform public health strategies and vaccination programs in Puerto Rico and similar settings.

View Article and Find Full Text PDF

The clinical manifestations of SARS-CoV-2 infection may range from asymptomatic or minor conditions to severe and life-threatening outcomes. The respiratory system is a principal target of the virus and in the majority of cases of severe disease, an acute form of pneumonia develops. Despite concerted global efforts to elucidate the pathogenic mechanisms of COVID-19, the progression of the infection leading to pulmonary damage remains poorly understood.

View Article and Find Full Text PDF

Characterization of serological responses to Plasmodium falciparum (Pf) is of interest to understand disease burden and transmission dynamics; however, their interpretation is challenging. Dried blood spots from 30,815 participants aged 6 months to 15 years from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey were analyzed by multiplex bead-based assay to measure immunoglobulin G (IgG) to Pf-stage-specific MSP-1, AMA-1, GLURPR0, LSA-1, and CSP. These IgG levels were analyzed by principal component analysis (PCA).

View Article and Find Full Text PDF

The interaction of isoquinoline alkaloid crebanine with immunoglobulin G and cytotoxic effects toward MCF-7 breast cancer cell line.

Int J Biol Macromol

December 2024

The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China. Electronic address:

In this study, the interaction of crebanine, an isoquinoline alkaloid, with immunoglobulin G (IgG) was evaluated. Subsequently, the anticancer effects of crebanine in MCF-7 breast cancer cells were assessed. The results demonstrate that static quenching plays a key role in the fluorescence quenching of the IgG by crebanine, and some embedded hydrophobic patches of the IgG are exposed upon interaction with crebanine, while the characteristic β-sheet conformation of the IgG was almost preserved.

View Article and Find Full Text PDF

Objective: To evaluate the characteristics of antifungal immunity in patients with bilateral chronic rhinosinusitis with nasal polyps.

Material And Methods: The study included 74 patients with bilateral chronic rhinosinusitis with nasal polyps and a control group consisting of 30 almost healthy individuals. All patients underwent surgery and were divided into two groups: Group I - with liquid secretion (=39), Group II - with thick secretion in the paranasal sinuses (=35).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!