The Serum Response Factor (SRF) is an important regulator of cell proliferation and differentiation. Dictyostelium discoideum srfB gene codes for an SRF homologue and is expressed in vegetative cells and during development under the control of three alternative promoters, which show different cell-type specific patterns of expression. The two more proximal promoters directed gene transcription in prestalk AB, stalk and lower-cup cells. The generation of a strain where the srfB gene has been interrupted (srfB(-)) has shown that this gene is required for regulation of actin-cytoskeleton-related functions, such as cytokinesis and macropinocytosis. The mutant failed to develop well in suspension, but could be rescued by cAMP pulsing, suggesting a defect in cAMP signaling. srfB(-) cells showed impaired chemotaxis to cAMP and defective lateral pseudopodium inhibition. Nevertheless, srfB(-) cells aggregated on agar plates and nitrocellulose filters 2 h earlier than wild type cells, and completed development, showing an increased tendency to form slug structures. Analysis of wild type and srfB(-) strains detected significant differences in the regulation of gene expression upon starvation. Genes coding for lysosomal and ribosomal proteins, developmentally-regulated genes, and some genes coding for proteins involved in cytoskeleton regulation were deregulated during the first stages of development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819988PMC
http://dx.doi.org/10.1016/j.ydbio.2008.01.026DOI Listing

Publication Analysis

Top Keywords

serum response
8
response factor
8
srfb gene
8
srfb- cells
8
wild type
8
genes coding
8
gene
5
cells
5
srfb member
4
member serum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!