A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. | LitMetric

One of the major challenges for large scale proteomics research is the quality evaluation of results. Protein identification from complex biological samples or experimental setups is often a manual and subjective task which lacks profound statistical evaluation. This is not feasible for high-throughput proteomic experiments which result in large datasets of thousands of peptides and proteins and their corresponding mass spectra. To improve the quality, reliability and comparability of scientific results, an estimation of the rate of erroneously identified proteins is advisable. Moreover, scientific journals increasingly stipulate that articles containing considerable MS data should be subject to stringent statistical evaluation. We present a newly developed easy-to-use software tool enabling quality evaluation by generating composite target-decoy databases usable with all relevant protein search engines. This tool, when used in conjunction with relevant statistical quality criteria, enables to reliably determine peptides and proteins of high quality, even for nonexperienced users (e.g. laboratory staff, researchers without programming knowledge). Different strategies for building decoy databases are implemented and the resulting databases are characterized and compared. The quality of protein identification in high-throughput proteomics is usually measured by the false positive rate (FPR), but it is shown that the false discovery rate (FDR) delivers a more meaningful, robust and comparable value.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200701073DOI Listing

Publication Analysis

Top Keywords

software tool
8
false discovery
8
discovery rate
8
quality evaluation
8
protein identification
8
statistical evaluation
8
peptides proteins
8
quality
6
easy-to-use decoy
4
decoy database
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!