Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One of the major challenges for large scale proteomics research is the quality evaluation of results. Protein identification from complex biological samples or experimental setups is often a manual and subjective task which lacks profound statistical evaluation. This is not feasible for high-throughput proteomic experiments which result in large datasets of thousands of peptides and proteins and their corresponding mass spectra. To improve the quality, reliability and comparability of scientific results, an estimation of the rate of erroneously identified proteins is advisable. Moreover, scientific journals increasingly stipulate that articles containing considerable MS data should be subject to stringent statistical evaluation. We present a newly developed easy-to-use software tool enabling quality evaluation by generating composite target-decoy databases usable with all relevant protein search engines. This tool, when used in conjunction with relevant statistical quality criteria, enables to reliably determine peptides and proteins of high quality, even for nonexperienced users (e.g. laboratory staff, researchers without programming knowledge). Different strategies for building decoy databases are implemented and the resulting databases are characterized and compared. The quality of protein identification in high-throughput proteomics is usually measured by the false positive rate (FPR), but it is shown that the false discovery rate (FDR) delivers a more meaningful, robust and comparable value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.200701073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!