Because damage to sympathetic nerve terminals occurs in a variety of diseases, we tested the hypothesis that nerve terminal damage per se is sufficient to impair ganglionic neurotransmission in vivo. First, we measured the effect of nerve terminal damage produced by the sympathetic nerve terminal toxin 6-hydroxydopamine (6-OHDA) on ganglionic levels of several neurotrophins thought to promote neurotransmission. 6-OHDA-induced nerve terminal damage did not decrease the expression of neurotrophin-4 or brain-derived neurotrophic factor mRNA in the celiac ganglia but did decrease the ganglionic content of both nerve growth factor protein (nadir = -63%) and the mRNA of the alpha-3 subunit of the nicotinic cholinergic receptor (nadir = -49%), a subunit required for neurotransmission. Next, we tested whether this degree of receptor deficiency was sufficient to impair activation of celiac ganglia neurons. Impaired fos mRNA responses to nicotine administration in the celiac ganglia of 6-OHDA-pretreated rats correlated temporally with suppressed expression of functional nicotinic receptors. We verified by Fos protein immunohistochemistry that this ganglionic impairment was specific to principal ganglionic neurons. Last, we tested whether centrally initiated ganglionic neurotransmission is also impaired following nerve terminal damage. The principal neurons in rat celiac ganglia were reflexively activated by 2-deoxy-glucose-induced glucopenia, and the Fos response in the celiac ganglia was markedly inhibited by pretreatment with 6-OHDA. We conclude that sympathetic nerve terminal damage per se is sufficient to impair ganglionic neurotransmission in vivo and that decreased nicotinic receptor production is a likely mediator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574801 | PMC |
http://dx.doi.org/10.1002/jnr.21651 | DOI Listing |
Epilepsia
January 2025
Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, North Carolina, USA.
Objective: This study was undertaken to test the following hypotheses in the Atp1a3 mouse (which carries the most common human ATP1A3 (the major subunit of the neuronal Na/K-adenosine triphosphatase [ATPase]) mutation, D801N): sudden unexpected death in epilepsy (SUDEP) occurs during seizures and is due to terminal apneas in some and due to lethal cardiac arrhythmias in others; and Atp1a3 mice have central cardiorespiratory dysregulation and abnormal respiratory drive.
Methods: Comparison was made of littermate wild-type and Atp1a3 groups using (1) simultaneous in vivo video-telemetry recordings of electroencephalogram, electrocardiogram, and breathing; (2) whole-body plethysmography; and (3) hypoglossal nerve recordings.
Results: In Atp1a3 mice, (1) SUDEP consistently occurred during seizures that were more severe than preterminal seizures; (2) seizure clustering occurred in periods preceding SUDEP; (3) slowing of breathing rate (BR) and heart rate was observed preictally before preterminal and terminal seizures; and (4) the sequence during terminal seizures was as follows: bradypnea with bradycardia/cardiac arrhythmias, then terminal apnea, followed by terminal cardiac arrhythmias.
Int J Mol Sci
December 2024
Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Aging disrupts multiple homeostatic processes, including autophagy, a cellular process for the recycling and degradation of defective cytoplasmic structures. Acute treatment with the autophagy inhibitor chloroquine blunts the maximal forces generated by the diaphragm muscle, but the mechanisms underlying neuromuscular dysfunction in old age remain poorly understood. We hypothesized that chloroquine treatment increases the presynaptic retention of the styryl dye FM 4-64 following high-frequency nerve stimulation, consistent with the accumulation of unprocessed bulk endosomes.
View Article and Find Full Text PDFCells
January 2025
Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA.
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.
Introduction: Motor recovery following nerve injury is dependent on time required for muscle reinnervation. This process is imperfect, however, and recovery is often incomplete. At the neuromuscular junction (NMJ), macrophage signaling aids muscle reinnervation.
View Article and Find Full Text PDFNat Commun
January 2025
Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Understanding vibrissal transduction has advanced by serial sectioning and identified afferent recordings, but afferent mapping onto the complex, encapsulated follicle remains unclear. Here, we reveal male rat C2 vibrissa follicle innervation through synchrotron X-ray phase contrast tomograms. Morphological analysis identified 5% superficial, ~32 % unmyelinated and 63% myelinated deep vibrissal nerve axons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!