The SRL4 (YPL033C) gene was initially identified by the screening of Saccharomyces cerevisiae genes that play a role in DNA metabolism and/or genome stability using the SOS system of Escherichia coli. In this study, we found that the srl4Delta mutant cells were resistant to the chemicals that inhibit nucleotide metabolism and evidenced higher dNTP levels than were observed in the wild-type cells in the presence of hydroxyurea. The mutant cells also showed a significantly faster growth rate and higher dNTP levels at low temperature (16 degrees C) than were observed in the wild-type cells, whereas we detected no differences in the growth rate at 30 degrees C. Furthermore, srl4Delta was shown to suppress the lethality of mutations of the essential S phase checkpoint genes, RAD53 and LCD1. These results indicate that SRL4 may be involved in the regulation of dNTP production by its function as a negative regulator of ribonucleotide reductase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-008-0013-6 | DOI Listing |
bioRxiv
January 2025
Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Sterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in non-dividing cells by reducing the intracellular dNTP pool. SAMHD1 enhances spontaneous apoptosis in cells, but its effects on HIV-1-induced apoptosis and the underlying mechanisms remain unknown. Here we uncover a new mechanism by which SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells through the mitochondrial pathway.
View Article and Find Full Text PDFInt J Cancer
December 2024
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a dNTP hydrolase important for intracellular dNTP homeostasis and serves as tumor suppressor and modulator of antimetabolite efficacy in cancer, though largely unexplored in breast cancer (BC). A cohort of patients with early BC (n = 564) with available gene expression data (GEP) was used. SAMHD1 protein expression was assessed by immunohistochemistry performed on tissue microarrays.
View Article and Find Full Text PDFBiomolecules
November 2024
Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary.
Tuberculosis (TB) presents significant medical challenges, largely due to the genetic diversity of , which enhances the resilience and resistance of the pathogen to first-line treatments. In response to the global rise of drug-resistant TB, second-line antitubercular drugs like bedaquiline (BDQ), linezolid (LZD), and clofazimine (CFZ) have become critical treatment options. Understanding the molecular changes these drugs induce is essential for optimizing TB therapy.
View Article and Find Full Text PDFViruses
September 2024
Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
Nat Biotechnol
September 2024
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!