Motivation: For any time-course microarray data in which the gene interactions and the associated paired patterns are dependent, the proposed pattern recognition (PARE) approach can infer time-lagged genetic interactions, a challenging task due to the small number of time points and large number of genes. PARE utilizes a non-linear score to identify subclasses of gene pairs with different time lags. In each subclass, PARE extracts non-linear characteristics of paired gene-expression curves and learns weights of the decision score applying an optimization algorithm to microarray gene-expression data (MGED) of some known interactions, from biological experiments or published literature. Namely, PARE integrates both MGED and existing knowledge via machine learning, and subsequently predicts the other genetic interactions in the subclass.

Results: PARE, a time-lagged correlation approach and the latest advance in graphical Gaussian models were applied to predict 112 (132) pairs of TC/TD (transcriptional regulatory) interactions. Checked against qRT-PCR results (published literature), their true positive rates are 73% (77%), 46% (51%), and 52% (59%), respectively. The false positive rates of predicting TC and TD (AT and RT) interactions in the yeast genome are bounded by 13 and 10% (10 and 14%), respectively. Several predicted TC/TD interactions are shown to coincide with existing pathways involving Sgs1, Srs2 and Mus81. This reinforces the possibility of applying genetic interactions to predict pathways of protein complexes. Moreover, some experimentally testable gene interactions involving DNA repair are predicted.

Availability: Supplementary data and PARE software are available at http://www.stat.sinica.edu.tw/~gshieh/pare.htm.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btn098DOI Listing

Publication Analysis

Top Keywords

genetic interactions
16
interactions
10
pattern recognition
8
approach infer
8
infer time-lagged
8
time-lagged genetic
8
gene interactions
8
published literature
8
positive rates
8
pare
6

Similar Publications

In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Despite growing awareness of their importance in soil ecology, the genetic and physiological traits of bacterial predators are still relatively poorly understood. In the course of a predator evolution experiment, we identified a class of genotypes leading to enhanced predation against diverse species. RNA-seq analysis demonstrated that this phenotype is linked to the constitutive activation of a predation-specific program.

View Article and Find Full Text PDF

Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

Tree Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.

View Article and Find Full Text PDF

Bone damages in laying hens are of great concern in poultry farming. Besides various risk factors like housing systems or nutrient supply during egg production, it has often been hypothesized that genetically high-performing laying hens may be more prone to bone damages. The relevance of dietary support during the rearing period of pullets for optimal bone development has been little addressed so far.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!