Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA-containing therapeutic genes, antisense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (>6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is "leaky" and allows extravasation of particles with small diameters. Thus, LNs protect the drug during circulation, prevent it from reaching healthy tissues, and permit its accumulation at sites of disease. We will discuss recent advances in this field involving conventional anticancer drugs as well as gene-delivery, immunostimulatory, and gene-silencing applications involving the new genetic drugs. LNMs have the potential to offer new treatments in such areas as cancer therapy, vaccine development, and cholesterol management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0192623307310960 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
Int J Nanomedicine
January 2025
School of Basic Medicine, Ningxia Medical University, Yinchuan, People's Republic of China.
Background: Colorectal cancer (CRC) is a highly malignant and aggressive gastrointestinal tumor. Due to its weak immunogenicity and limited immune, cell infiltration lead to ineffective clinical outcomes. Therefore, to improve the current prophylaxis and treatment scheme, offering a favorable strategy efficient against CRC is urgently needed.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa, ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", via dei Vestini 31, 66013 Chieti, Italy.
Periodontitis is a prevalent inflammatory disease affecting the supporting structures of the teeth, leading to gum recession, tooth loss, and systemic health complications. Traditional diagnostic methods and treatments, such as clinical evaluation and scaling, often fall short in early detection and targeted therapy, particularly in complex or advanced cases. Recent advancements in nanomedicine offer promising solutions for improving both the diagnosis and treatment of periodontitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!