Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, the electrochemical oxidation of pyrogallol (1,2,3-trihydroxybenzene) on boron-doped diamond anodes has been studied. The voltammetric results showed that pyrogallol oxidation takes place in the same potential region as that of phenol where the supporting electrolyte is stable. Synthetic wastewaters containing pyrogallol have been treated in a bench-scale electrolysis plant. This plant operates in a discontinuous mode by recirculating the waste continuously through a single-chamber electrochemical flow cell. The complete mineralization of pyrogallol and the electro-generated pollutants is obtained in the electrolytic device. HPLC analyses show the formation of carboxylic acids as the main intermediates. The efficiency of the electrochemical process was found to depend mainly on the pollutant concentration present in the waste and on the applied current density. The high efficiency of this technology can be explained in terms of the direct electro-oxidation at the BDD surface and the oxidation carried out by hydroxyl radicals and other electro-generated oxidants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2007.12.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!