The present study shows the use of confocal autofluorescence spectroscopy coupled with the time-resolved fluorescence decay analysis to measure changes in FAD/NAD[P]H and free/bound NAD[P]H in HepG(2) cells at 0.5, 1.5, 3 and 4.5h after exposure to cadmium chloride (Cd). These changes were compared to changes in GSSG/GSH and production of reactive oxygen radicals (ROS) production. The results demonstrated that both FAD/NAD[P]H and GSSG/GSH increased significantly upon exposure to Cd. The change in GSSG/GSH occurred as early as 1.5h after treatment while the change in FAD/NAD[P]H did not occur until 3h after exposure. Production of ROS was also increased at 1.5h. The ratio of free/bound NAD[P]H was studied. It was demonstrated that free/bound NAD[P]H increased significantly as early as 0.5h and remained elevated until 4.5h after treatment with Cd. The present study provides novel data to show that changes in NAD[P]H metabolism precedes the increase in ROS production and cellular oxidative stress (increase GSSG/GSH, FAD/NAD[P]H). It is suggested that Cd causes a release of NAD[P]H, an important cofactor for electron transfer, from its normal protein binding sites. This may result in a disruption of the activity of the enzyme and proteins, and may lead to the subsequent toxic events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2008.01.021 | DOI Listing |
Int J Mol Sci
February 2024
Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Lenin Ave. 36, 634050 Tomsk, Russia.
Bioinert materials such as the zirconium dioxide and aluminum oxide are widely used in surgery and dentistry due to the absence of cytotoxicity of the materials in relation to the surrounding cells of the body. However, little attention has been paid to the study of metabolic processes occurring at the implant-cell interface. The metabolic activity of mouse 3T3 fibroblasts incubated on yttrium-stabilized zirconium ceramics cured with aluminum oxide (ATZ) and stabilized zirconium ceramics (Y-TZP) was analyzed based on the ratio of the free/bound forms of cofactors NAD(P)H and FAD obtained using two-photon microscopy.
View Article and Find Full Text PDFBiosensors (Basel)
February 2023
Institute of Chemical Process Fundamentals of the ASCR, Rozvojova 135, 165 00 Prague, Czech Republic.
In this paper, we analysed the steady state fluorescence spectra of cell suspensions containing healthy and carcinoma fibroblast mouse cells, using a genetic-algorithm-spectra-decomposition software (GASpeD). In contrast to other deconvolution algorithms, such as polynomial or linear unmixing software, GASpeD takes into account light scatter. In cell suspensions, light scatter plays an important role as it depends on the number of cells, their size, shape, and coagulation.
View Article and Find Full Text PDFCommun Biol
November 2022
NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
Here we use a combination of two-photon Fluorescence Lifetime Imaging Microscopy (FLIM) of NAD(P)H free/bound ratio in living HIs with post-fixation, immunofluorescence-based, cell-type identification. FLIM allowed to measure variations in the NAD(P)H free/bound ratio induced by glucose; immunofluorescence data allowed to identify single α and β cells; finally, matching of the two datasets allowed to assign metabolic shifts to cell identity. 312 α and 654 β cells from a cohort of 4 healthy donors, 15 total islets, were measured.
View Article and Find Full Text PDFMethods Appl Fluoresc
November 2019
Privolzhsky Research Medical University, 10/1 Minin and Pozharsky sq., Nizhny Novgorod, 603950, Russia.
Exploring metabolism in human tumors at the cellular level remains a challenge. The reduced form of metabolic cofactor NAD(P)H is one of the major intrinsic fluorescent components in tissues and a valuable indicator of cellular metabolic activity. Fluorescence lifetime imaging (FLIM) enables resolution of both the free and protein-bound fractions of this cofactor, and thus, high sensitivity detection of relative changes in the NAD(P)H-dependent metabolic pathways in real time.
View Article and Find Full Text PDFJ Control Release
July 2019
Therapeutics Research Centre, Faculty of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia. Electronic address:
Skin-targeting microscale medical devices are becoming popular for therapeutic delivery and diagnosis. We used cryo-SEM, fluorescence lifetime imaging microscopy (FLIM), autofluorescence imaging microscopy and inflammatory response to study the puncturing and recovery of human skin ex vivo and in vivo after discretised puncturing by a microneedle array (Nanopatch®). Pores induced by the microprojections were found to close by ~25% in diameter within the first 30 min, and almost completely close by ~6 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!