The mucin Muc2 is the main component of the intestinal mucus layer and thus plays important roles in intestinal protection. Therefore, it is important to understand its regulation during goblet cell differentiation. Foxa1 and Foxa2 forkhead box transcription factors (TFs) participate in transcriptional programs governing intestinal cell differentiation. Using immunohistochemistry, we showed a spatio-temporal pattern of expression of both TFs in developing and adult mouse intestine and their expression in Muc2-expressing intestinal cells. Down-regulation of Foxa1 and Foxa2 by RNA interference in cultured intestinal cells decreased Muc2 mRNA level by half, and abolished Muc2 protein expression. Chromatin immunoprecipitation and gel shift assays showed that these two TFs directly bind to the Muc2 promoter. Co-transfection experiments indicated that both TFs activate the Muc2 promoter and that mutations of three Foxa cis-elements inhibit Muc2 transactivation. In conclusion, this work identifies Foxa1 and Foxa2 as important regulators of Muc2 expression in the intestine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2008.02.158 | DOI Listing |
J Virol
November 2024
Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
Unlabelled: In the hepatis B virus (HBV) transgenic mouse model of chronic infection, the forkhead box protein A/hepatocyte nuclear factor 3 (Foxa/HNF3) family of pioneer transcription factors are required to support postnatal viral demethylation and subsequent HBV transcription and replication. Liver-specific Foxa-deficient mice with hepatic expression of only Foxa3 do not support HBV replication but display biliary epithelial hyperplasia with bridging fibrosis. However, liver-specific Foxa-deficient mice with hepatic expression of only Foxa1 or Foxa2 also successfully restrict viral transcription and replication but display only minimal alterations in liver physiology.
View Article and Find Full Text PDFNat Struct Mol Biol
October 2024
Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
Pioneer transcription factors (PTFs) possess the unique capability to access closed chromatin regions and initiate cell fate changes, yet the underlying mechanisms remain elusive. Here, we characterized the single-molecule dynamics of PTFs targeting chromatin in living cells, revealing a notable 'confined target search' mechanism. PTFs such as FOXA1, FOXA2, SOX2, OCT4 and KLF4 sampled chromatin more frequently than non-PTF MYC, alternating between fast free diffusion in the nucleus and slower confined diffusion within mesoscale zones.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
In this study, the Fox gene family of Ruditapes philippinarum was identified by bioinformatics analysis and genome data. The results showed that a total of 21 Fox genes were identified in R. philippinarum, which were divided into 16 subfamilies, including two members of Foxa subfamily (Foxa1, Foxa2), three members of Foxl subfamily (Foxl1b, Foxl1a, FOXL2), three members of Foxn subfamily (FOXN3, FOX4A, Foxn4b) and one member of other families.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
June 2024
Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research & Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education & Hainan Provincial Clinical Research Center for Thalassemia, Department of Reproductive Medicine, National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 571101 Haikou, Hainan, China.
bioRxiv
June 2024
Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
Background: Prostate cancer is a heterogenous disease, but once it becomes metastatic it eventually becomes treatment resistant. One mechanism of resistance to AR-targeting therapy is lineage plasticity, where the tumor undergoes a transformation to an AR-indifferent phenotype, most studied in the context of neuroendocrine prostate cancer (NEPC). However, activation of additional de- or trans-differentiation programs, including a gastrointestinal (GI) gene expression program, has been suggested as an alternative method of resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!