Malignant gliomas, with an incidence of 5 cases per 100,000 population per year, represent the most common primary brain tumour. They have an overall survival length of less than 2 years. Many different adjuvant therapies have been developed. Among them, Photodynamic Therapy (PDT), that is based on photochemical reactions between light and tumoral tissue selectively labelled with exogenous photosensitizing agents. Among photosensitizers, m-THPC (Temoporfin), seems to be the most promising one for the treatment of brain tumors, but, unfortunately, it causes problems of high skin photosensitivity. To by-pass this problem, we devised an intratumoral route of administration of this photosensitizer. The aim of this study is to investigate and compare the uptake of m-THPC in brain tumor and normal tissue after systemic and intratumoral administration of the drug. 30 female Wistar rats received m-THPC 12 days after C6 tumor implantation. Temoporfin was administered intratumorally in 24 rats at two different concentrations. 6 rats constituted the control group and received m-THPC by means of an intraperitoneal injection. The brains were extracted at 4 h, 24 h and 96 h after Temoporfin injection. The samples were examined with a confocal laser scanning microscope. All samples showed high fluorescence emission exclusively in the tumour area, without appreciable differences between the samples taken at the different times of sacrifice and the two routes of administration. No fluorescence whatsoever was detected among normal brain tissue surrounding the tumour. The intratumoral route appears to give comparable results to the systemic one, regarding intracellular uptake efficiency and tumour--normal tissue ratio, with the advantage of a much shorter time needed to reach optimal intratumoural concentration--that is just four hours from m-THPC injection.

Download full-text PDF

Source
http://dx.doi.org/10.1177/039463200802100126DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
malignant gliomas
8
intratumoral route
8
received m-thpc
8
m-thpc
5
intratumoral
4
intratumoral systemic
4
administration
4
systemic administration
4
administration meta-tetrahydroxyphenylchlorin
4

Similar Publications

The angiopoietin (Ang)-Tie axis, critical for endothelial cell function and vascular development, is a promising therapeutic target for treating vascular disorders and inflammatory conditions like sepsis. This study aimed to enhance the binding affinity of recombinant Ang1 variants to the Tie2 and explore their therapeutic potential. Structural insights from the Ang1-Tie2 complex enabled the identification of key residues within the Ang1 receptor binding domain (RBD) critical for Tie2 interaction.

View Article and Find Full Text PDF

Near-Infrared Photothermal Conversion by Isocorrole and Phlorin Derivatives.

Inorg Chem

January 2025

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.

Photothermal therapy is a promising strategy for treating tumors and bacterial infections by using light irradiation to locally heat tissues. Metalloisoporphyrinoid materials have been investigated for their use as singlet oxygen photosensitizers for photodynamic therapy but remain underexplored as photothermal agents. Recently, two metallophlorin and two metalloisocorrole materials were found to have strong near-infrared absorbance, with low photoluminescent quantum yields, suggesting high rates of nonradiative decay.

View Article and Find Full Text PDF

Assembly-enhanced recognition: A biomimetic pathway to achieve ultrahigh affinities.

Proc Natl Acad Sci U S A

January 2025

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.

View Article and Find Full Text PDF

Gliomas are aggressive intracranial tumors of the central nervous system with a poor prognosis, high risk of recurrence, and low survival rates. Radiation, surgery, and chemotherapy are traditional cancer therapies. It is very challenging to accurately image and differentiate the malignancy grade of gliomas due to their heterogeneous and infiltrating nature and the obstruction of the blood-brain barrier.

View Article and Find Full Text PDF

Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics.

J Am Chem Soc

January 2025

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!