How do rat cortical cells cultured with aluminum die: necrosis or apoptosis?

Int J Immunopathol Pharmacol

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.

Published: June 2008

Aluminum (Al) exposure has been implicated as the cause of neural cells loss in several neurodegenerative diseases. Therefore, defining the mechanism of neural cell death in Al toxicity and degenerative diseases might lead to the development of therapeutic agents which promote neural cell survival. Furthermore, knowledge of cell death pathways might facilitate the discovery of treatments for neurodegeneration. However, the death mode of neural cells triggered by Al has not been firmly established. The present study focuses on understanding the pathway of cells death in cultured cortical cells treated with Al. Primary neurons cultured alone, astrocytes cultured alone, and neuron/astrocyte co-cultures obtained from newborn rats were incubated with Al at the concentrations of 0, 0.5, 1.0, or 2.0 mM for 72 h. Morphological changes were observed with an inverted phase microscope, a fluorescent microscope, and an electron microscope. Simultaneously, the rate of apoptosis was quantified with flow cytometry. Morphological characteristics of apoptosis such as cell shrinkage, aggregation and fragmentation of chromatin, membrane buds, and formation of membrane-bound apoptotic bodies were observed in Al-treated neurons, while none of these characteristics were found in Al-treated astrocytes. Quantitative results of apoptotic rates detected with flow cytometry indicated a typical apoptosis progression in neurons at various dosages. A concentration-dependent relationship between Al concentration and apoptotic rates confirmed that apoptosis is the prominent cause of cell death in primary cultured neurons, even at a concentration lower than 2 mM. Both necrosis and apoptosis are evident in neuron/astrocyte co-cultures, but the intensity of apoptosis is much less compared with that of neurons, suggesting that astrocytes may be especially important for neuronal survival in the presence of Al.

Download full-text PDF

Source
http://dx.doi.org/10.1177/039463200802100112DOI Listing

Publication Analysis

Top Keywords

cell death
12
cortical cells
8
neural cells
8
neural cell
8
neuron/astrocyte co-cultures
8
flow cytometry
8
apoptotic rates
8
apoptosis
6
cells
5
cultured
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!