Concentrations of arsenic and fluoride above Mexican drinking water standards have been detected in aquifers of various areas of Mexico. This contamination has been found to be mainly caused by natural sources. However, the specific processes releasing these toxic elements into groundwater have been determined in a few zones only. Many studies, focused on arsenic-related health effects, have been performed at Comarca Lagunera in northern México. High concentrations of fluoride in water were also found in this area. The origin of the arsenic there is still controversial. Groundwater in active mining areas has been polluted by both natural and anthropogenic sources. Arsenic-rich minerals contaminate the fractured limestone aquifer at Zimapán, Central México. Tailings and deposits smelter-rich fumes polluted the shallow granular aquifer. Arsenic contamination has also been reported in the San Antonio-El Triunfo mining zone, southern Baja California, and Santa María de la Paz, in San Luis Potosí state. Even in the absence of mining activities, hydrogeochemistry and statistical techniques showed that arsenopyrite oxidation may also contaminate water, as in the case of the Independencia aquifer in the Mexican Altiplano. High concentrations of arsenic have also been detected in geothermal areas like Los Azufres, Los Humeros, and Acoculco. Prevalence of dental fluorosis was revealed by epidemiological studies in Aguascalientes and San Luis Potosí states. Presence of fluoride in water results from dissolution of acid-volcanic rocks. In Mexico, groundwater supplies most drinking water. Current knowledge and the geology of Mexico indicate the need to include arsenic and fluoride determinations in groundwater on a routine basis, and to develop interdisciplinary studies to assess the contaminant's sources in all enriched areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10653-008-9167-8 | DOI Listing |
J Environ Sci (China)
July 2025
Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada. Electronic address:
J Hazard Mater
January 2025
Third World Center (TWC) for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:
Groundwater contamination is a growing global concern. The objective of the present study is to assess the groundwater quality of Khairpur district, Sindh, Pakistan-a region which is emblematic of broad environmental and public health challenges prevalent in South Asian countries. The study also aims to comprehend the impact of arsenic (As), fluoride (F), and nitrate (NO) dynamics and its health implications.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Earth System Science, Tianjin University, Tianjin 300072, China.
The hydrodynamics, water temperature, and water quality model for the Dan River and Renzhuang Reservoir continuum were developed using field monitoring data and the Environmental Fluid Dynamics Code (EFDC). An in-situ water discharge experiment enabled the calculation of water propagation time using a simulated flood progression method and the hydrodynamics module of EFDC. Based on these model results, degradation coefficients for chemical oxygen demand, biochemical oxygen demand, nitrogen (N), phosphorus (P), fluoride, arsenic were determined, revealing significantly higher values when the wetland barrage was opening.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Hydraulic Engineering, Dalian University of Technology, Dalian, 116024, China.
Groundwater pollution has become a global challenge, posing significant threats to human health and ecological environments. Machine learning, with its superior ability to capture non-linear relationships in data, has shown significant potential in addressing groundwater pollution issues. This review presents a comprehensive bibliometric analysis of 1462 articles published between 2000 and 2023, offering an overview of the current state of research, analyzing development trends, and suggesting future directions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!