Antibody-dependent cellular cytotoxicity is initiated when low affinity Fc receptors (Fc gamma R type III/CD16) on NK cells bind to sensitized (i.e., antibody coated) target cells. Fc gamma R cross-linkage induces the activation of phospholipase C (PLC), which hydrolyses membrane phosphoinositides, generating inositol-1,4,5-trisphosphate and sn-1,2-diacylglycerol as second messengers. However, the mechanism that couples Fc gamma R stimulation to PLC activation remains unknown. In this study, we investigated whether the Fc gamma R is coupled to PLC via a guanine nucleotide-binding (G) protein or an alternative pathway. Stimulation of electropermeabilized human NK cells with GTP gamma S induced inositol phosphate (IP) release, indicating the presence of a G protein-linked PLC activity in these cells. However, stimulation with both anti-Fc gamma R mAb and GTP gamma S provoked additive rather than synergistic increases in IP formation. Furthermore, exogenous GDP strongly inhibited GTP gamma S-stimulated IP release, but failed to inhibit the response to anti-Fc gamma R mAb stimulation. These results suggested GTP gamma S and anti-Fc gamma R mAb activated PLC through distinct regulatory mechanisms, and that Fc gamma R was not linked to PLC via a G protein. Hence, an alternative transduction mechanism for Fc gamma R-PLC coupling was considered. Antibody-mediated Fc gamma R cross-linkage was shown to rapidly stimulate tyrosine phosphorylation of multiple proteins in NK cells. Pretreatment with the tyrosine kinase inhibitor, herbimycin A, inhibited these phosphorylation events and disrupted the coupling between Fc gamma R ligation and PLC activation. These observations suggest that Fc gamma R in NK cell is coupled to PLC via a G protein-independent, but tyrosine kinase-dependent pathway.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gamma
17
gtp gamma
16
anti-fc gamma
12
gamma mab
12
protein-independent tyrosine
8
tyrosine kinase-dependent
8
kinase-dependent pathway
8
gamma cross-linkage
8
plc
8
plc activation
8

Similar Publications

Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.

Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.

View Article and Find Full Text PDF

Platelet-rich fibrin (PRF) and Enamel Matrix Derivatives (EMD) can support the local regenerative events in periodontal defects. There is reason to suggest that PRF and EMD exert part of their activity by targeting the blood-derived cells accumulating in the early wound healing blastema. However, the impact of PRF and EMD on blood cell response remains to be discovered.

View Article and Find Full Text PDF

Role of PGC-1α in the proliferation and metastasis of malignant tumors.

J Mol Histol

January 2025

Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.

Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.

View Article and Find Full Text PDF

γδ T cells producing either interleukin-17A (γδ cells) or interferon-γ (γδ cells) are generated in the mouse thymus, but the molecular regulators of their peripheral functions are not fully characterized. Here we established an Il17a-GFP:Ifng-YFP double-reporter mouse strain to analyze at unprecedented depth the transcriptomes of pure γδ cell versus γδ cell populations from peripheral lymph nodes. Within a very high fraction of differentially expressed genes, we identify a panel of 20 new signature genes in steady-state γδ cells versus γδ cells, which we further validate in models of experimental autoimmune encephalomyelitis and cerebral malaria, respectively.

View Article and Find Full Text PDF

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!