We proposed a new method based on total relative change (TRC) from measured boundary voltages to quantify the volume changes of fluid during electrical impedance tomography (EIT) monitoring. The results showed that TRC linearly correlated with the volume of infused saline solution into a phantom, and the slope of TRC changes was approximately linear with the infusion speed. A inserted copper tube at different positions did not affect TRC significantly. The linear relationship between TRC and volume change indicates that TRC could be a good quantitative index for dynamic EIT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2007.905487 | DOI Listing |
JMIR Form Res
January 2025
Larner College of Medicine, University of Vermont, Burlington, VT, United States.
Background: Social media has become a widely used way for people to share opinions about health care and medical topics. Social media data can be leveraged to understand patient concerns and provide insight into why patients may turn to the internet instead of the health care system for health advice.
Objective: This study aimed to develop a method to investigate Reddit posts discussing health-related conditions.
JMIR Serious Games
January 2025
School of Computing, Engineering and Mathematical Sciences, Optus Chair Digital Health, La Trobe University, Melbourne, Australia.
Background: This review explores virtual reality (VR) and exercise simulator-based interventions for individuals with attention-deficit/hyperactivity disorder (ADHD). Past research indicates that both VR and simulator-based interventions enhance cognitive functions, such as executive function and memory, though their impacts on attention vary.
Objective: This study aimed to contribute to the ongoing scientific discourse on integrating technology-driven interventions into the management and evaluation of ADHD.
JMIR AI
January 2025
Department of Information Systems and Business Analytics, Iowa State University, Ames, IA, United States.
Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the generalized fluctuation-dissipation theorem. The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain.
We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!