Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Real-time approximators for continuous-time dynamical systems with many inputs are presented. These approximators employ a novel self-organizing radial basis function (RBF) network, which varies its structure dynamically to keep the prescribed approximation accuracy. The RBFs can be added or removed online in order to achieve the appropriate network complexity for the real-time approximation of the dynamical systems and to maintain the overall computational efficiency. The performance of this variable structure RBF network approximator with both Gaussian RBF (GRBF) and raised-cosine RBF (RCRBF) is analyzed. The compact support of RCRBF enables faster training and easier output evaluation of the network than that of the network with GRBF. The proposed real-time self-organizing RBF network approximator is then employed to approximate both linear and nonlinear dynamical systems to illustrate the effectiveness of our proposed approximation scheme, especially for higher order dynamical systems. The uniform ultimate boundedness of the approximation error is proved using the second method of Lyapunov.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNN.2007.909842 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!