Virulent mutations in the bacteriophage Mu repressor gene were isolated and characterized. Recombination and DNA sequence analysis have revealed that virulence is due to unusual frameshift mutations which change several C-terminal amino acids. The vir mutations are in the same repressor region as the sts amber mutations which, by eliminating several C-terminal amino acids, suppress thermosensitivity of repressor binding to the operators by its N-terminal domain (J. L. Vogel, N. P. Higgins, L. Desmet, V. Geuskens, and A. Toussaint, unpublished data). Vir repressors bind Mu operators very poorly. Thus the Mu repressor C terminus, either by itself or in conjunction with other phage or host proteins, tunes the DNA-binding properties at the repressor N terminus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC208995PMC
http://dx.doi.org/10.1128/jb.173.20.6578-6585.1991DOI Listing

Publication Analysis

Top Keywords

frameshift mutations
8
mutations bacteriophage
8
bacteriophage repressor
8
repressor gene
8
c-terminal amino
8
amino acids
8
repressor terminus
8
repressor
6
gene confer
4
confer trans-dominant
4

Similar Publications

Backgroud: The ALMS1 gene is predominantly localized to cilia, particularly in the photoreceptor cells of the retina, auditory neurons, kidneys, and other ciliated structures. Pathogenic mutations in this gene cause Alstrom syndrome (AS), which is characterized by dilated cardiomyopathy, retinal degeneration, neurodeafness, and centripetal obesity. However, the genetic mechanism of the ALMS1 gene remains unclear.

View Article and Find Full Text PDF

Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells.

Adv Biotechnol (Singap)

January 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.

Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.

View Article and Find Full Text PDF

Adult bi-paternal offspring generated through direct modification of imprinted genes in mammals.

Cell Stem Cell

January 2025

State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China. Electronic address:

Imprinting abnormalities pose a significant challenge in applications involving embryonic stem cells, induced pluripotent stem cells, and animal cloning, with no universal correction method owing to their complexity and stochastic nature. In this study, we targeted these defects at their source-embryos from same-sex parents-aiming to establish a stable, maintainable imprinting pattern de novo in mammalian cells. Using bi-paternal mouse embryos, which exhibit severe imprinting defects and are typically non-viable, we introduced frameshift mutations, gene deletions, and regulatory edits at 20 key imprinted loci, ultimately achieving the development of fully adult animals, albeit with a relatively low survival rate.

View Article and Find Full Text PDF

NHD/PLOSL is an orphan disease characterized by progressive presenile dementia associated with recurrent fractures due to polycystic bone lesions. In this study, we generated the human induced pluripotent stem cell (hiPSC) line BIHi292-A from a 30-year-old women diagnosed with NHD/PLOSL, carrying two compound heterozygous frameshift mutations [c.313del (p.

View Article and Find Full Text PDF

Novel De Novo Intronic Variant of SYNGAP1 Associated With the Neurodevelopmental Disorders.

Mol Genet Genomic Med

February 2025

Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.

Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!