[Spatiotemporal variation of carbon storage in forest vegetation in Sichuan Province].

Ying Yong Sheng Tai Xue Bao

College of Forestry & Horticulture, Sichuan Agricultural University, Ya' an 625014, Sichuan, China.

Published: December 2007

Based on the modeling of forest biomass and timber volume and the 1974-2004 forest inventory data, the spatiotemporal variation of carbon density and storage in forest vegetation in Sichuan Province was studied. The results showed that the forest carbon storage was increased from 300.02 Tg in 1974 to 469.96 Tg in 2004, with an annual increment of 1.51%, which suggested that the forests in Sichuan Province were the sink of CO2. However, owing to the increase of plantations, the average carbon density of forest vegetation decreased from 49.91 Mg x hm(-2) to 37.39 Mg x Shm(-2), implying that Sichuan forests had a great potential of carbon sequestration through artificial forest management. The carbon storage in Sichuan forests had a spatial heterogeneity, and the ranked order was northwest alpine gorge area > southwest mountainous area > low-mountain area > hilly area > western plain. Forest carbon density increased from southwest area to northwest area, with the order of hilly area < northern plain < southwest mountain area < low-mountain area < northwest alpine gorge area. It was suggested that forest management according to different sub-regions would improve the potential of carbon sequestration in Sichuan forests.

Download full-text PDF

Source

Publication Analysis

Top Keywords

carbon storage
12
forest vegetation
12
carbon density
12
sichuan forests
12
area
10
forest
9
carbon
8
variation carbon
8
storage forest
8
vegetation sichuan
8

Similar Publications

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery.

J Colloid Interface Sci

January 2025

School of Mechanical Engineering and Mechanics, School of Chemistry, Xiangtan University, Xiangtan 411105 PR China. Electronic address:

Developing insertion-type anodes is essential for designing high-performance "rocking chair" zinc-ion batteries. BiOCl shows great potential as an insertion-type anode material for Zn storage due to its high specific capacity and unique layered structure. However, the development of BiOCl has been significantly hampered by its poor stability and kinetics during cycling.

View Article and Find Full Text PDF

Ammonia (NH) holds promise as a carbon-free fuel. Blending it with highly reactive fuels could efficiently alleviate issues such as slow burning rates and narrow flammability ranges. Ethanol (CHOH) offers the advantage of carbon neutrality and has a high-octane rating.

View Article and Find Full Text PDF

Decoupled responses of soil microbial diversity and ecosystem functions to successive degeneration processes in alpine pioneer community.

Sci China Life Sci

January 2025

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.

Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.

View Article and Find Full Text PDF

Computational analysis of linear chain of holey nanographene and their molecular characterizations.

J Mol Model

January 2025

PG & Research Department of Mathematics, Sanatana Dharma College, Kerala University, Alappuzha, Kerala, 688003, India.

Holey nanographene, an allotrope of carbon arranged in two dimensions, has gained remarkable attention as a nanomaterial with several potential uses in numerous industries, such as electronics, energy storage, healthcare, and environmental cleanup, because of its high carrier mobility, flexibility, transparency, high surface area, conductivity, and chemical stability. The fundamental holey nanographene is assembled in a linear form to create the holey nanographene chain (HNC) that is being discussed. To fully utilize it in various applications, it is essential to comprehend the basic ideas guiding its behavior at the nanoscale; for that, we find various topological indices for this holey nanographene chain using the cut method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!