Angiotensin converting enzyme inhibition markedly suppresses neointima formation in response to balloon catheter-induced vascular injury of the rat carotid artery. To determine whether this effect was mediated through the vasoactive peptide angiotensin II (Ang II), two approaches were followed. First, the balloon model was used to compare the effects of continuous infusion of Ang II, with and without concurrent converting enzyme inhibition by cilazapril; second, the effects of the orally active nonpeptidic Ang II receptor antagonist DuP 753 were analyzed. Morphometric analysis was performed at 14 days after balloon injury. Animals that received continuous infusion of Ang II (0.3 micrograms/min/rat) were found to have significantly greater neointima formation in response to balloon injury than controls. Animals treated with cilazapril (10 mg/kg/day) had markedly reduced neointima formation, but in animals receiving infusion of Ang II, treatment with cilazapril did not suppress development of neointimal lesions. In the second group of experiments, DuP 753 (10 mg/kg twice daily) was as effective to prevent neointima formation as cilazapril. These data support the conclusions that converting enzyme inhibition prevents neointima formation after vascular injury through inhibition of Ang II generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.hyp.18.4_suppl.ii60 | DOI Listing |
J Mater Sci Mater Med
January 2025
Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, PR China.
In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.
It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China.
J Vasc Interv Radiol
December 2024
Vascular and Interventional Radiology Translational Research Lab, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:
J Surg Res
December 2024
Department of Vascular and Endovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Introduction: Neointimal hyperplasia is one of the persistent complications after vascular interventions, and is the major cause of treatment failure. Interleukin-33 (IL-33) emerges as a crucial factor in many biological processes and plays an important role in vascular diseases. Adventitial injection is catching attention for its effectiveness and fewer side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!