Background: Laparoscopic radiofrequency ablation (RFA) is a safe and effective method for tumor destruction in patients with unresectable liver tumors. However, accurate probe placement using laparoscopic ultrasound guidance is required to achieve complete tumor ablation. After evaluation of an ultrasound navigation system for transcutaneous and open RFA, we now intend to transfer this technique to laparoscopic liver surgery. This study aimed to evaluate an electromagnetic navigation system for laparoscopic interventions using a perfusable ex vivo artificial tumor model.

Materials And Methods: First a special adapter was developed to attach the ultrasound and electromagnetic tracking-based navigation system to a laparoscopic ultrasound probe. The laparoscopic online navigation system was studied in a laparoscopic artificial tumor model using perfused porcine livers. Artificial tumors were created by injection of a mixture of 3% agarose, 3% cellulose, and 7% glycerol, creating hyperechoic lesions in ultrasound.

Results: This study showed that laparoscopic ultrasound-guided navigation is technically feasible. Even in cases of angulation of the ultrasound probe no disturbances of the navigation system could be detected. Artificial tumors were clearly visible on laparoscopic ultrasound and not felt during placement of the RFA probe. Anatomic landmarks and simulated 'tumors' in the liver could be reached safely.

Discussion: Laparoscopic RFA requires advanced laparoscopic ultrasound skills for accurate placement of the RFA probe. The use of an ultrasound-based, laparoscopic online navigation system offers the possibility of out-of-plane needle placement and could increase the safety and accuracy of punctures. The perfused artificial tumor model presented a realistic model for the evaluation of this new technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063599PMC
http://dx.doi.org/10.1080/13651820601089077DOI Listing

Publication Analysis

Top Keywords

navigation system
28
artificial tumor
16
laparoscopic ultrasound
16
laparoscopic
13
online navigation
12
system laparoscopic
12
tumor model
12
navigation
8
laparoscopic interventions
8
vivo artificial
8

Similar Publications

Amidst the global challenge of extreme poverty, the livestock sector can significantly contribute to global sustainable development goals by enhancing resilience, smallholder productivity, and market participation. The Indian livestock sector is one of the largest in the world with a total livestock population of 535.82 million, ∼10.

View Article and Find Full Text PDF

In the United States, socioeconomic disparities are a reality that shapes the challenges many communities of color experience. Throughout the globe, community-based initiatives have been explored as a way to reduce several barriers that contribute to social inequalities. One in particular, the Promotora framework, has been widely used to improve health outcomes.

View Article and Find Full Text PDF

This study evaluates the feasibility of Apple Vision Pro goggles as an augmented reality (AR) surgical navigation tool for laparoscopic-assisted ultrasound-guided radiofrequency ablation (RFA) of liver tumors. Traditional RFA is effective but challenging due to the integration of multiple imaging modalities. The primary aim of this research is to assess how Vision Pro goggles can enhance the surgical navigation process during RFA, improving tumor localization and the overall effectiveness of the procedure.

View Article and Find Full Text PDF

Leaflet: Operative Steps for Interventional Studies in Neuroscience.

Neurol Int

December 2024

Santa Lucia Foundation, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy.

Background/objectives: Drug development involves multiple stages, spanning from initial discovery to clinical trials. This intricate process entails understanding disease mechanisms, identifying potential drug targets, and evaluating the efficacy and safety of candidate drugs. Clinical trials are designed to assess the effects of drugs on humans, focusing on determining safety profiles, appropriate modes of administration, and comparative efficacy against placebos.

View Article and Find Full Text PDF

Visual Impairment Spatial Awareness System for Indoor Navigation and Daily Activities.

J Imaging

January 2025

Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.

The integration of artificial intelligence into daily life significantly enhances the autonomy and quality of life of visually impaired individuals. This paper introduces the Visual Impairment Spatial Awareness (VISA) system, designed to holistically assist visually impaired users in indoor activities through a structured, multi-level approach. At the foundational level, the system employs augmented reality (AR) markers for indoor positioning, neural networks for advanced object detection and tracking, and depth information for precise object localization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!