Background: While aspirin is the drug most often used to prevent cardiovascular complications, its discontinuation induces an increased risk of acute coronary syndrome and ischemic stroke in some patients.
Objectives: We hypothesized that infinitesimal concentrations of aspirin could persist in plasma after its discontinuation, thereby inducing a prothrombotic effect that could be due to a modification in the mechanism of action of aspirin via the cyclooxygenase 1 (COX-1) and COX-2 pathways.
Methods And Results: We studied the effects of ultra-low-dose aspirin (ULDA) as well as those of sc-560 and ns-398, specific COX-1 and COX-2 inhibitors, on induced hemorrhagic time and in a model of laser-induced thrombosis in rats. In the laser-induced thrombosis model, ULDA treatment increased the number of emboli and the duration of embolization, thereby confirming its prothrombotic effect described in previous publications. This effect was also observed in rats pretreated with sc-560 but not in those pretreated with ns-398.
Conclusions: We demonstrated that ULDA induced a prothrombotic effect in the rats studied. This strongly suggests that a very small amount of aspirin could remain in the patient's blood after aspirin therapy, leading to cardiovascular complications. This effect may be mediated by the COX-2 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000112638 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
Purpose: Homoarginine (hArg) is an arginine metabolite that has been known for years, but its physiological role in the body remains poorly understood. For instance, it is well known that high hArg concentrations in the blood are protective against several disease states, yet the mechanisms behind these health benefits are unclear. This review compiles what is known about hArg, namely its synthetic pathways, its role in different diseases and conditions, and its proposed mechanisms of action in humans and experimental animals.
View Article and Find Full Text PDFArtif Organs
January 2025
Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.
View Article and Find Full Text PDFJ Vasc Access
January 2025
Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
Background: Extracorporeal membrane oxygenation (ECMO) is a critical treatment for severe cardiopulmonary failure. However, traditional ECMO decannulation methods, such as manual compression and surgical repair, are associated with significant complications. This study evaluates suture-mediated closure devices, specifically Perclose ProGlide, as a potentially favorable decannulation strategy.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
Sedentary lifestyles and prolonged physical inactivity are often linked to poor mental and physical health as well as an increased risk of a number of chronic illnesses, including cancer, obesity, type 2 diabetes, and cardiovascular problems. Metabolic Syndrome (MetS), as the new disease, has emerged as the world's leading cause of illness. Despite having its roots in the West, this issue has now completely globalized due to the development of the Western way of life throughout the world.
View Article and Find Full Text PDFAn atrial septal defect (ASD) is a common congenital heart anomaly that results in irregular blood flow between the systemic and pulmonary circulations due to an opening in the atrial septum. Ostium secondum ASD accounts for a large proportion of these defects and often goes unnoticed during childhood and adolescence. Pulmonary hypertension (PH), affecting a significant number of patients with ostium secondum ASD, is associated with functional limitations, heart failure, and tachyarrhythmias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!