Genetically encoded sensors of glutamate concentration are based on FRET between cyan and yellow fluorescent proteins bracketing a bacterial glutamate-binding protein. Such sensors have yet to find quantitative applications in neurons, because of poor response amplitude in physiological buffers or when expressed on the neuronal cell surface. We have improved our glutamate-sensing fluorescent reporter (GluSnFR) by systematic optimization of linker sequences and glutamate affinities. Using SuperGluSnFR, which exhibits a 6.2-fold increase in response magnitude over the original GluSnFR, we demonstrate quantitative optical measurements of the time course of synaptic glutamate release, spillover, and reuptake in cultured hippocampal neurons with centisecond temporal and spine-sized spatial resolution. During burst firing, functionally significant spillover persists for hundreds of milliseconds. These glutamate levels appear sufficient to prime NMDA receptors, potentially affecting dendritic spike initiation and computation. Stimulation frequency-dependent modulation of spillover suggests a mechanism for nonsynaptic neuronal communication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2393813 | PMC |
http://dx.doi.org/10.1073/pnas.0712008105 | DOI Listing |
J Biomed Phys Eng
December 2024
Department of Medical Physics & Biomedical Eng., School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
Background: Acquiring new knowledge necessitates alterations at the synaptic level within the brain. Glutamate, a pivotal neurotransmitter, plays a critical role in these processes, particularly in learning and memory formation. Although previous research has explored glutamate's involvement in cognitive functions, a comprehensive understanding of its real-time dynamics remains elusive during memory tasks.
View Article and Find Full Text PDFJ Neurosci
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.
View Article and Find Full Text PDFNeurosci Res
December 2024
Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:
Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:
Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.
View Article and Find Full Text PDFNeural Regen Res
November 2025
School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
JOURNAL/nrgr/04.03/01300535-202511000-00029/figure1/v/2024-12-20T164640Z/r/image-tiff Neuronal activity, synaptic transmission, and molecular changes in the basolateral amygdala play critical roles in fear memory. Cylindromatosis (CYLD) is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!