Plant cell polarity: sterols enter into action after cytokinesis.

Dev Cell

Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, 46 allée d'Italie F-69364 Lyon, France.

Published: March 2008

In yeast and animal cells, the sterol composition of membranes is a key factor that controls the polarity of membrane proteins by regulating their intracellular trafficking or lateral diffusion. A recent study in Nature Cell Biology demonstrates that plant sterols play a major role in the acquisition of cell polarity by modulating endocytosis after cell division.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.devcel.2008.02.007DOI Listing

Publication Analysis

Top Keywords

cell polarity
8
plant cell
4
polarity sterols
4
sterols enter
4
enter action
4
action cytokinesis
4
cytokinesis yeast
4
yeast animal
4
animal cells
4
cells sterol
4

Similar Publications

An extracellular vesicle based hypothesis for the genesis of the polycystic kidney diseases.

Extracell Vesicle

December 2024

The Jared Grantham Kidney Institute at the University of Kansas Medical Center, Department of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, KS 66160, USA.

Autosomal dominant polycystic kidney (ADPKD) disease is the commonest genetic cause of kidney failure (affecting 1:800 individuals) and is due to heterozygous germline mutations in either of two genes, and . Homozygous germline mutations in are responsible for autosomal recessive polycystic kidney (ARPKD) disease a rare (1:20,000) but severe neonatal disease. The products of these three genes, (polycystin-1 (PC1 4302(3)aa)), (polycystin-2 (PC2 968aa)) and (fibrocystin (4074aa)) are all present on extracellular vesicles (EVs) termed, PKD-exosome-like vesicles (PKD-ELVs).

View Article and Find Full Text PDF

Background: Regeneration plays a key role in energy recycling and homeostasis maintenance. Planarians, as ideal model animals for studying regeneration, stem cell proliferation, and apoptosis, have the strong regenerative abilities. Considerable evidence suggests that ubiquitin plays an important role in maintaining homeostasis and regulating regeneration, but the function of Ubiquitin specific proteases 7 (Usp7) on regeneration in planarians remains elusive.

View Article and Find Full Text PDF

Stable and affordable phosphonates removal by iron scrap packed-bed anode electrocoagulation under realistic conditions: Mechanism and passivation mitigation over long-term operation.

Water Res

January 2025

Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China. Electronic address:

Iron electrocoagulation (Fe-EC) exhibits broad application in water remediation towards various pollutants, including emerging organic phosphorus compounds (i.e., phosphonates).

View Article and Find Full Text PDF

Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians.

Heliyon

January 2025

Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China.

Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage.

View Article and Find Full Text PDF

Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development.

Differentiation

January 2025

Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA. Electronic address:

The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!