Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films.

J Chem Phys

Departamento de Fisica, Universidade Estadual de Londrina, C.P. 6001, Londrina, CEP 86051-970 Paraná, Brazil.

Published: March 2008

The temperature dependence of the photoluminescence properties of a thin film of poly[2-methoxy-5-(2(')-ethylhexyloxy)-p-phenylene-vinylene], MEH-PPV, fabricated by spin coating, is analyzed. The evolution with temperature of the peak energy of the purely electronic transition, of the first vibronic band, of the effective conjugation length, and of the Huang-Rhys factors are discussed. The asymmetric character of the pure electronic transition peak and the contribution of the individual vibrational modes to the first vibronic band line shape are considered by a model developed by Cury et al. [J. Chem. Phys. 121, 3836 (2004)]. The temperature dependence of the Huang-Rhys factors of the main vibrational modes pertaining to the first vibronic band allows us to identify two competing vibrational modes. These results show that the electron coupling to different vibrational modes depends on temperature via reduction of thermal disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2835606DOI Listing

Publication Analysis

Top Keywords

vibrational modes
20
vibronic band
12
temperature dependence
8
electronic transition
8
huang-rhys factors
8
vibrational
5
modes
5
identification optically
4
optically active
4
active vibrational
4

Similar Publications

Chalcones are organic substances that have diverse biological activities and exhibit potential for the treatment of various diseases. The properties of these substances depend on the type and position of the functional group attached to their aromatic rings. As a result, in this work the chalcone (2E)-1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one (CHO) was investigated by Raman spectroscopy and computational calculations at high pressures with the objective of analyzing its structural stability.

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.

View Article and Find Full Text PDF

A novel design for double-bending elliptical vibration boring device and its performance evaluation.

Ultrasonics

January 2025

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.

Steel precision matching parts are widely used in aerospace and automobiles. In order to ensure the stability of the system, the matching parts' mating surfaces, such as inner holes and outer shafts, are required to achieve nano-surface roughness and submicron-shape accuracy. Diamond-cutting technology is generally used for ultra-precision machining processes.

View Article and Find Full Text PDF

Deciphering the abnormal IR spectral density of phthalic acid dimer crystals: Unveiling the role of the dynamical effects of the Davydov coupling and the mechanisms of relaxation.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Physics Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia. Electronic address:

To consistently determine the anomalous characteristics of phthalic acid crystal (PAC) derivatives, we performed quantum dynamics simulations of the infrared spectral density of the h-PAC and d-PAC isotopomers that show up in the H/D isotopic frequency domain at two different temperatures viz. 77 and 298 K. A theoretical framework explaining the dynamical cooperative interactions within the hydrogen bonds (HBs) in the PAC crystals across a simulation of IR spectral density of the stretching band was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!