Using a one-step procedure we have prepared magnetic fluids comprising of polyelectrolyte stabilized magnetite nanoparticles. These nanocomposites are comprised of linear, chain-like assemblies of magnetic nanoparticles, which can be aligned in parallel arrays by an external magnetic field. We have shown the potential use of these materials as contrast agents by measuring their MR response in live rats. The new magnetic fluids have demonstrated good biocompatibility and potential for in vivo MRI diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja710172zDOI Listing

Publication Analysis

Top Keywords

assemblies magnetic
8
magnetic nanoparticles
8
contrast agents
8
magnetic fluids
8
magnetic
5
linear assemblies
4
nanoparticles mri
4
mri contrast
4
agents one-step
4
one-step procedure
4

Similar Publications

AlgaeSperm: Microalgae-Based Soft Magnetic Microrobots for Targeted Tumor Treatment.

Small

January 2025

School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.

Magnetic microrobots are significant platforms for targeted drug delivery, among which sperm-inspired types have attracted much attention due to their flexible undulation. However, mass production of sperm-like soft magnetic microrobots with high-speed propulsion is still challenging due to the need of more reasonable structure design and facile fabrication. Herein, a novel strategy is proposed for large-scale preparation of microalgae-based soft microrobots with a fully magnetic head-to-tail structure, called AlgaeSperm with robust propulsion and chemo-photothermal performance.

View Article and Find Full Text PDF

Robotic Microcapsule Assemblies with Adaptive Mobility for Targeted Treatment of Rugged Biological Microenvironments.

ACS Nano

January 2025

Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Microrobots are poised to transform biomedicine by enabling precise, noninvasive procedures. However, current magnetic microrobots, composed of solid monolithic particles, present fundamental challenges in engineering intersubunit interactions, limiting their collective effectiveness in navigating irregular biological terrains and confined spaces. To address this, we design hierarchically assembled microrobots with multiaxis mobility and collective adaptability by engineering the potential magnetic interaction energy between subunits to create stable, self-reconfigurable structures capable of carrying and protecting cargo internally.

View Article and Find Full Text PDF

In this work, the electrochemical biosensor based on the subtle combination of terminal deoxynucleotidyl transferase (TdT), CRISPR/Cas14a, and magnetic nanoparticles (MNPs) was developed for the detection of nasopharyngeal carcinoma (NPC)-derived exosomes. Due to the synergistic effect of the following factors: the powerful elongation capacity of TdT for single-stranded DNA (ssDNA) with 3-hydroxy terminus, the outstanding trans-cleavage ability of CRISPR/Cas14a specifcally activated by the crRNA binding to target DNA, and the excellent separation ability of MNPs, the developed electrochemical biosensor exhibited high sensitivity for the detection of NPC-derived exosome, with a linear range from 6.0 × 10 ∼ 1.

View Article and Find Full Text PDF

Liquid-nano-liquid interface-oriented anisotropic encapsulation.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.

Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!