The title compounds were synthesized via high-temperature reactions of the elements in welded Ta tubes and characterized by single-crystal X-ray diffraction analyses and band structure calculations. SrAu(3.76(2))In(4.24) crystallizes in the YCo5In3 structure type with two of eight network sites occupied by mixtures of Au and In: Pnma, Z = 4, a = 13.946(7), b = 4.458(2), c = 12.921(6) A. Its phase breadth appears to be small. Sr4Au9In 13 exhibits a new structure type, P_6 m2, Z = 1, a = 12.701(2), c = 4.4350(9) A. The Sr atoms in both compounds center hexagonal prisms of nominally alternating In and Au atoms and also have nine augmenting (outer) Au + In atoms around their waists so as to define 21-vertex Sr@Au9M4In8 (M = Au/In) and Sr@Au9In12 polyhedra, respectively. The relatively larger Sr content in the second phase also leads to condensation of some of the ideal building units into trefoil-like cages with edge-shared six-member rings. One overall driving force for the formation of these structures can be viewed as the need for each Sr cation to have as many close neighbors as possible in the more anionic Au-In network. The results also depend on the cation size as well as on the flexibility of the anionic network and an efficient intercluster condensation mode as all clusters are shared. Band structure calculations (LMTO-ASA) emphasize the greater strengths (overlap populations) of the Au-In bonds and confirm expectations that both compounds are metallic.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic702145yDOI Listing

Publication Analysis

Top Keywords

band structure
8
structure calculations
8
structure type
8
srau4in4 sr4au9in13
4
sr4au9in13 polar
4
polar intermetallic
4
intermetallic structures
4
structures cations
4
cations augmented
4
augmented hexagonal
4

Similar Publications

Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.

View Article and Find Full Text PDF

Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.

View Article and Find Full Text PDF

United Nations, the Struggle for Gender Equity, and Queering Global Science.

OMICS

January 2025

OMICS: A Journal of Integrative Biology, New Rochelle, New York, USA.

UN Women is the United Nations "entity dedicated to gender equality and the empowerment of women". UN Women is an example of the institutions of global governance that followed the gender turn in women's rights over the past 2 decades. This opinion commentary unpacks a brief history of UN Women, and the ongoing disparities in gender diversity, equity, and inclusion (DEI) in science, engineering, and medicine, not to mention in science communication, with the aim to shed light on the adverse impacts of gender essentialism and gender binary.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!