The HIV-1 envelope (Env) is a key determinant in mediating viral entry and fusion to host cells and is a major target for HIV vaccine development. While Env is typically about 50% glycan by mass, glycosylation sites are known to evolve, with some glycosylation profiles presumably being more effective at facilitating neutralization escape than others. Thus, characterizing glycosylation patterns of Env and native virions and correlating glycosylation profiles with infectivity and Env immunogenicity are necessary first steps in designing effective immunogens. Herein, we describe a mass spectrometry-based strategy to determine HIV-1 Env glycosylation patterns and have compared two mammalian cell expressed recombinant Env immunogens, one a limited immunogen and one that induces cross-clade neutralizing antibodies. We have used a glycopeptide-based mass mapping approach to identify and characterize Env's glycosylation patterns by elucidating which sites are utilized and what type of glycan motif is present at each glycosylation site. Our results show that the immunogens displayed different degrees of glycosylation as well as a different characteristic set of glycan motifs. Thus, these techniques can be used to (1) define glycosylation profiles of recombinant Env proteins and Env on mature virions, (2) define specific carbohydrate moieties at each glycosylation site, and (3) determine the role of certain carbohydrates in HIV-1 infectivity and in modulation of Env immunogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658474PMC
http://dx.doi.org/10.1021/pr7006957DOI Listing

Publication Analysis

Top Keywords

glycosylation
12
glycosylation site
12
glycosylation profiles
12
glycosylation patterns
12
env
9
env immunogenicity
8
recombinant env
8
glycosylation site-specific
4
site-specific analysis
4
analysis hiv
4

Similar Publications

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) is the most common histological subtype of nonsmall-cell lung cancer. Herein, a multiomics method, which combined proteomic and N-glycoproteomic analyses, was developed to analyze the normal and cancerous bronchoalveolar lavage fluids (BALFs) from six LUAD patients to identify potential biomarkers of LUAD. The data-independent acquisition proteomic analysis was first used to analyze BALFs, which identified 59 differentially expressed proteins (DEPs).

View Article and Find Full Text PDF

HIV-1 and BLV are insensitive to SERINC5 restriction under the cell-cell infection.

Microbiol Spectr

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

ine orporator 5 (INC5, SER5) suppresses viral cell-free infection. However, its antiviral potency under viral cell-cell infection is not examined yet. Here, we established the cell-cell infection systems to assess SER5's antiviral activity on HIV-1 and bovine leukemia virus (BLV).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) in obese patients remains challenging. Recent studies have linked obesity to an increased risk of TNBC and malignancies. Through multiomic analysis and experimental validation, a dysfunctional Eukaryotic Translation Initiation Factor 3 Subunit H (EIF3H)/Yes-associated protein (YAP) proteolytic axis is identified as a pivotal junction mediating the interplay between cancer-associated adipocytes and the response to anti-cancer drugs in TNBC.

View Article and Find Full Text PDF

Objectives: Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!