High-LET radiation combined with oxaliplatin induce autophagy in U-87 glioblastoma cells.

Cancer Lett

Laboratoire de Cancérologie Expérimentale et de Radiobiologie, EA-3430, Université Louis Pasteur, Institut de Recherche contre les Cancers de l'Appareil Digestif (IRCAD), Hôpitaux Universitaires, 1 place de l'Hôpital, Strasbourg, France.

Published: June 2008

Modern protocols of concomitant chemo/radiotherapy provide a very effective strategy to treat certain types of tumors. High-linear energy transfer (LET) radiations, on the other hand, have an increased efficacy against cancer with low radiosensibility and critical localization. We previously reported that oxaliplatin, a third generation platinum drug, was able to reinforce the cytotoxicity of an irradiation by fast neutrons towards human glioblastoma U-87 cells in culture. We show here that such a combination has the capacity to enhance the number of double strand breaks in DNA and to induce autophagy in these cells. Xenografts experiments were further performed in nude mice subcutaneously transplanted with U-87 cells. When injected shortly before a single irradiation by fast neutrons, oxaliplatin causes a marked reduction of tumor growth compared with the irradiation alone. Overall, our data indicate the unique cytotoxic mechanism of a combined high-LET irradiation and oxaliplatin treatment modality and suggest its potential application in anticancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2008.01.023DOI Listing

Publication Analysis

Top Keywords

induce autophagy
8
irradiation fast
8
fast neutrons
8
u-87 cells
8
high-let radiation
4
radiation combined
4
oxaliplatin
4
combined oxaliplatin
4
oxaliplatin induce
4
autophagy u-87
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!