The EGF-TM7 receptor CD97 shows different features of expression and function in muscle cells compared to hematopoetic and tumor cells. Since the molecular function and regulation of CD97 are poorly understood, this study aimed at defining its basal transcriptional regulation in smooth muscle cells (SMCs). The computational analysis of the CD97 5'-flanking region revealed that the TATA box-lacking promoter possesses several GC-rich regions as putative Sp1/Sp3 binding sites. Transfection studies with serially deleted promoter constructs demonstrated that the minimal promoter fragment resided in the -218/+45 region containing one out of five identified GC-boxes in the leiomyosarcoma cell line SK-LMS-1 and human bronchial smooth muscle cells (HbSMCs). Mutation of the most proximal GC-site in CD97 reporter gene constructs caused a significant decrease in promoter activity. Gel shift assays and chromatin immunoprecipitation revealed that Sp1 and Sp3 bound specifically to the most proximal GC-site. Furthermore, we showed that Sp1 and Sp3 over-expression activates CD97 promoter activity in HEK293 cells. Our data characterize for the first time the activity of the human CD97 promoter which is controlled by Sp1/Sp3 transcription factors in SMCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2008.01.021 | DOI Listing |
Mol Ther
January 2025
Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA, 02139; Howard Hughes Medical Institute; Chevy Chase, MD, USA, 20815; Department of Materials Science of Engineering; Massachusetts Institute of Technology; Cambridge, MA, USA, 02139. Electronic address:
mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live mice and non-human primates (NHPs). Following i.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.
View Article and Find Full Text PDFFoods
December 2024
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile.
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Cultured meat (CM) is derived from the in vitro myogenesis of muscle satellite (stem) cells (MSCs) and offers a promising alternative protein source. However, the development of a cost-effective media formulation that promotes cell growth has yet to be achieved. In this study, laxogenin (LAX) and 5-alpha-hydroxy-laxogenin (5HLAX) were computationally screened against myostatin (MSTN), a negative regulator of muscle mass, because of their antioxidant properties and dual roles as MSTN inhibitors and enhancers of myogenesis regulatory factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!