Planar lipid bilayers, e.g., black lipid membranes (BLM) and solid supported membranes (SSM), have been employed to investigate charge movements during the reaction cycle of P-type ATPases. The BLM/SSM method allows a direct measurement of the electrical currents generated by the cation transporter following chemical activation by a substrate concentration jump. The electrical current transients provides information about the reaction mechanism of the enzyme. In particular, the BLM/SSM technique allows identification of electrogenic steps which in turn may be used to localize ion translocation during the reaction cycle of the pump. In addition, using the high time resolution of the technique, especially when rapid activation via caged ATP is employed, rate constants of electrogenic and electroneutral steps can be determined. In the present review, we will discuss the main results obtained by the BLM and SSM methods and how they have contributed to unravel the transport mechanism of P-type ATPases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2008.02.031 | DOI Listing |
PLoS One
January 2025
Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.
Although long-term high dietary sodium consumption often aggravates hypertension and bone loss, sodium in the intestinal lumen has been known to promote absorption of nutrients and other ions, e.g., glucose and calcium.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
February 2025
Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain.
Aims: Sarcoendoplasmic reticulum Ca-ATPase 2 (SERCA2), encoded by ATP2A2, is a key protein involved in intracellular Ca homeostasis. The SERCA2a isoform is predominantly expressed in cardiomyocytes and type I myofibres. Variants in this gene are related to Darier disease, an autosomal dominant dermatologic disorder, but have never been linked to myopathy.
View Article and Find Full Text PDFJ Membr Biol
January 2025
Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei (UFSJ), Divinópolis, Brazil.
Cancer is a leading cause of death worldwide and its treatment is hampered by the lack of specificity and side effects of current drugs. Cardiotonic steroids (CTS) interact with Na/K-ATPase (NKA) and induce antineoplastic effects, but their narrow therapeutic window is key limiting factor. The synthesis of digitoxigenin derivatives with glycosidic unit modifications is a promising approach to develop more selective and effective antitumor agents.
View Article and Find Full Text PDFGenes Brain Behav
February 2025
Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!