Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study addresses the simulation of ion chromatographic (IC) separations performed under conditions where the elution profile consists of a sequence of isocratic and gradient elution steps (referred to as "complex elution profiles"). First, models for prediction of retention under gradient elution conditions in IC were evaluated using an extensive database of gradient elution retention data. It is shown that one such model is preferred on the basis that it can be used to predict gradient retention times on the basis of isocratic input data. A method is then proposed for using this model for complex elution profiles whereby each step of the elution profile is treated separately and analyte movement through the column is mapped. An empirically based algorithm for predicting peak width under complex elution conditions is also proposed. Evaluation of the suggested approaches was undertaken on a set of 24 analyte anions and 13 analyte cations on 5 different Dionex columns using a range of 5-step complex elution profiles that gave R2 values for correlations between predicted and observed retention times of 0.987 for anions and 0.997 for cations. The simulation of separations of anions and cations using a 3-step complex elution profile is demonstrated, with good correlation between observed and predicted chromatograms. The proposed approach is useful for the rapid development of separations when complex elution profiles are used in IC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac702275n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!