Our objective was to characterize the variation in gene expression for key genes associated with chondrogenic phenotype of osteochondrosis (OC)-affected and normal chondrocytes, and to identify whether OC chondrocytes can redifferentiate and regain a phenotype similar to normal chondrocytes if appropriate chondrogenic signals are given. Equine articular cartilage removed at surgery to treat clinically significant OC lesions was collected (n = 10), and the gene expression evaluated and compared to aged-matched normal samples (n = 10). Cartilage was harvested from normal (n = 4) and OC (n = 3) joints from horses at necropsy. Chondrogenic pellet cultures were established following monolayer proliferation. After 14 days in culture, the pellets were assessed by histochemical and pellet weight analysis, assay of glycosaminoglycan (GAG) content, and gene expression. Chondrocytes from OC cartilage expressed significantly more Coll-I, -II, -III, and -X than chondrocytes from normal cartilage (all p < 0.0001). Furthermore, OC chondrocytes expressed significantly more MMP-13, ADAMTS-4 (both p < 0.0001), and TIMP-1 (p < 0.001) and significantly less TIMP-2 and TIMP-3. Pellets created from OC chondrocytes contained significantly less GAG (p = 0.0069) and expressed significantly less Sox9 and significantly more superficial zone protein (SZP) (p = 0.0105) than pellets created from normal cartilage. The results suggest that chondrocytes from OC cartilage at the time of surgical treatment have perturbations in phenotype compared to cells from normal cartilage. Despite these differences, following monolayer expansion and pellet culture under chondrogenic conditions, chondrocytes derived from OC cartilage retain some ability to undergo chondrogenic differentiation and synthesize an appropriate cartilage-like matrix. However, this chondrogenic differentiation potential is inferior to that seen in aged-matched normal chondrocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.20602 | DOI Listing |
Physiol Plant
January 2025
College of Life Sciences/ College of Agriculture, Yangtze University, Jingzhou, China.
Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.
View Article and Find Full Text PDFPlanta
January 2025
School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!